Math, asked by aryanatg576, 11 months ago

If a,b, c are real numbers such that (ab)/(a + b) = 1/3, (bc)/(b + c) = 1/4 , (ca)/(c + a) = 1/5 the value of abc/ab + bc + ca is​

Answers

Answered by saounksh
12

ᴀɴsᴡᴇʀ

  •  \frac{abc}{ab+bc+ca} = \frac{1}{6}

ᴇxᴘʟᴀɪɴᴀᴛɪᴏɴ

ɢɪᴠᴇɴ

  •  \frac{ab}{a+b} = \frac{1}{3}

  •  \frac{bc}{b+c} = \frac{1}{4}

  •  \frac{ca}{c+a} = \frac{1}{5}

ᴛᴏ ғɪɴᴅ

  •  \frac{abc}{ab+bc+ca}

ᴄᴀʟᴄᴜʟᴀᴛɪᴏɴ

Here,

 \frac{ab}{a+b} = \frac{1}{3}\to \frac{a+b}{ab}= 3

 \frac{bc}{b+c} = \frac{1}{4}\to \frac{b+c}{bc} = 4</p><p>

 \frac{ca}{c+a} = \frac{1}{5}\to \frac{c+a}{ca} = 5</p><p>

Now,

 \:  \:  \:  \frac{abc}{ab + bc + ca} =   \frac{2abc}{2ab + 2bc + 2ca}

 =\frac{2}{ \frac{2ab + 2bc + 2ca}{abc} }  =  \frac{2}{ \frac{ab + bc + bc + ca + ca + ab}{abc} }

 =  \frac{2}{ \frac{ab + bc}{abc}  +  \frac{bc + ca}{abc}  +  \frac{ca + ab}{abc} }

 =  \frac{2}{ \frac{b(c + a)}{abc}   + \frac{c(a + b)}{abc} +  \frac{a(b + c)}{abc}}

 =  \frac{2}{ \frac{c + a}{ca} +  \frac{a + b}{ab}  +  \frac{b + c}{bc}}

 =  \frac{2}{5+ 3 + 4}

  = \frac{2}{12}

 =  \frac{1}{6}

Answered by brain11342
1

Answer:

1/6 is the answer

Similar questions