Math, asked by shamim6, 1 year ago

If a, b, c are real numbers then prove that (a+b) (b+c) (c+a) >=8abc

Answers

Answered by Jyotishmangoswami
1
(a+b) (b+c) (c+a) >=8abc
=> a+b X b+c X c+a >=8abc
=> a x a x b x b x c x c >=8abc
=> (a^2) (b^2) (c^2) > 8abc

therefore, (a+b) (b+c) (c+a) > 8abc
Answered by Teluguwala
2

Applying AM - GM inequality for a,b

 \qquad \displaystyle \sf \frac{a + b}{2}   \: \geqslant \:  b

 \qquad \displaystyle \sf a + b \:  \geqslant  \: 2 \sqrt{ab}

Similarly,

\qquad \displaystyle \sf b + c \:  \geqslant \:  2 \sqrt{bc}

 \qquad \qquad \&

\qquad \displaystyle \sf c + a \:  \geqslant \:  2 \sqrt{ca}

  \sf\therefore \: (a + b)(b + c)(c + a) \:  \geqslant  \: 8 \sqrt{ab}  \sqrt{bc}  \sqrt{ca}

 \qquad \qquad =  \:   \sf 8 \sqrt{(ab)(bc)(ca)}

 \qquad \qquad =  \:   \sf 8 \sqrt{(abc)^{2} }

 \qquad \qquad =  \:   \bf 8 \:  abc

Hence,

=> (a+b) (b+c) (c+a) = 8 abc

 \:

Similar questions