if a,b,c are real, then a(a-b)+b(b-c)+c(c-a)=0 if
Answers
Answered by
4
hey dear ☺☺❤
↑↑↑↑↑↑↑↑↑
To solve this question, you must know the identity
(a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca)
(a+b+c)^2 ≥ 0 for any real values of a, b, c
Therefore,
a^2 + b^2 + c^2 + 2(ab + bc + ca) ≥ 0
Given that a^2 + b^2 + c^2 = 1
Therefore,
1 + 2(ab + bc + ca) ≥ 0
ab + bc + ca ≥ -1/2
(a-b)^2 + (b-c)^2 + (c-a)^2 ≥ 0
2 [ a^2 + b^2 + c^2 - ab - bc - ca ] ≥ 0
2 [ 1 - (ab + bc + ca)] ≥ 0
Therefore, 1 ≥ (ab + bc + ca)
Hence the answer is [-1/2, 1]
Hav a good time :)
hope it's help uuu
↑↑↑↑↑↑↑↑↑
To solve this question, you must know the identity
(a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca)
(a+b+c)^2 ≥ 0 for any real values of a, b, c
Therefore,
a^2 + b^2 + c^2 + 2(ab + bc + ca) ≥ 0
Given that a^2 + b^2 + c^2 = 1
Therefore,
1 + 2(ab + bc + ca) ≥ 0
ab + bc + ca ≥ -1/2
(a-b)^2 + (b-c)^2 + (c-a)^2 ≥ 0
2 [ a^2 + b^2 + c^2 - ab - bc - ca ] ≥ 0
2 [ 1 - (ab + bc + ca)] ≥ 0
Therefore, 1 ≥ (ab + bc + ca)
Hence the answer is [-1/2, 1]
Hav a good time :)
hope it's help uuu
Answered by
5
Answer:
a=b=c
Step-by-step explanation:
PLEASE MARK ME AS BRAINLIEST ANSWER
Attachments:
Similar questions