Math, asked by igaurav23, 1 year ago

if a b c are the angles of a triangle such that sec(a-b), seca , sec(a+b) are in AP then show that 2Sec^2a=sec^2b/2​

Attachments:

Answers

Answered by MrAdityaAlok
3

2sec a=sec (a+b)+sec(a-b) {as in ap}

2seca =  sec(a + b) + sec(a  - b) \\2sec a=  \frac{ \cos(a - b) +  \cos(a + b)  }{ \cos(a). \cos(b)  -  \sin(a). \sin(b)  - \cos(a). \cos(b)   +  \sin(a). \sin(b)  }  \\  \\ 2seca =  \frac{2 \cos(a) . \cos(b) }{  { cos}^{2}a. {cos}^{2}  b -  {sin}^{2} a. {sin}^{2}  b}  \\  \frac{2}{cosa}  =  \frac{2 \cos(a) . \cos(b)}{ {cos}^{2} b +  {cos}^{2} a - 1}  \\  {{cos}^{2} b +  {cos}^{2} a - 1} =  {cos}^{2} a.cos(b)

rest in picture....

Attachments:
Answered by rishu6845
0

Step-by-step explanation:

plzz give me brainliest ans and plzzzz follow me

Attachments:
Similar questions