if A,B,C are the angles of an acute angled triangle and cos (B+C-A)= 0, sin (C+B+A)= ✓3/2 find the values of A, B and C
Answers
Answered by
2
Answer:
Step-by-step explanation:
Note: Sin(C+B+A) = √3/2 is wrong. This is because Sin(C+B+A) = Sin 60° => A + B + C = 60° which is not correct. It should be Sin(C+A - B)
A + B + C = 180° ---- (1)
Given, Given,
Cos(B+C - A) = 0 Sin(C+A - B) = √3/2
=> Cos(B+C - A) = Cos90° => Sin(C+A - B) = Sin60°
=> B+C - A = 90° ----- (2) => C + A - B = 60° -------- (3)
(2) + (3)
B + C - A + C + A - B = 90 + 60
=> 2C = 150°
=> C = 75°
(1) - (2) we get
A + B + C - ( B + C - A) = 180 - 90
=> 2A = 90
=> A = 45°
Substituting values of A and C in (1),
A + B + C= 180
=> 45 + B + 75 = 180
=> B + 120 = 180
=> B = 60°
∠A = 45°, ∠B = 60°, ∠C = 75°
Similar questions