Math, asked by arjunprasannan, 1 year ago

if a b c are the angles of triangle ABC prove that tan A + c by 2 is equal to COT B by 2​

Answers

Answered by arpityadav58
1

Answer:

A+B+C =180 Answer:

tan\big(\frac{\angle A+ \angle C}{2}\big)=cot(\frac{B}{2})tan(

2

∠A+∠C

)=cot(

2

B

)

\begin{lgathered}We \: know \: that,\\ In \: Triangle \: ABC , \\\angle A + \angle B + \angle C=180\degree\end{lgathered}

Weknowthat,

InTriangleABC,

∠A+∠B+∠C=180°

( Angle sum property )

\implies \angle A+\angle C = 180\degree - \angle B⟹∠A+∠C=180°−∠B

Divide both sides by 2 , we get

\implies \frac{\angle A+ \angle C}{2}=\frac{180}{2}-\frac{B}{2}⟹

2

∠A+∠C

=

2

180

2

B

\implies \frac{\angle A+ \angle C}{2}=90\degree -\frac{B}{2}⟹

2

∠A+∠C

=90°−

2

B

\implies tan\big(\frac{\angle A+ \angle C}{2}\big)=tan\big(90\degree -\frac{B}{2}\big)⟹tan(

2

∠A+∠C

)=tan(90°−

2

B

)

\implies tan\big(\frac{\angle A+ \angle C}{2}\big)= cot(\frac{B}{2})⟹tan(

2

∠A+∠C

)=cot(

2

B

)

/* Since ,

tan(90° - A) =cotA */

•••♪

Answered by EvilQueen01
6

Answer:

_______________________________________________________ _______________________

_________

Solution:-

________

from figure;

In ∆PQR:-

<P +<Q +<R=180°. {Angle sum property}

______________

A+ B+C =180°

B+C =180°-A

___________

Dividing by 2 both side

____________

B+C/2 = 180°-A/2

B+C /2 = 90°-A/2

______________

Taken Tan both sides

________________

Tan(B+C/2)= Tan(90°-A/2)

Tan(B+C/2)=CotA/2

_______________

hence prove

hope helps

Attachments:
Similar questions