Math, asked by rekhasharmananukanu, 1 year ago

if a b c are the interior angles of a triangle ABC then prove that sin (A+B/2) cos c/2 + cos(A+B/2) sin c/2 = 1​

Answers

Answered by Anonymous
5

\underline{\large{\sf To Prove:}}

\sf sin(\frac{A+B}{2})cos(\frac{c}{2})+cos(\frac{A+B}{2})sin(\frac{c}{2})=1

\underline{\large{\sf Proof:}}

\sf LHS\:sin (\frac{A+B}{2}).cos(\frac{c}{2})+cos(\frac{A+B}{2}).sin(\frac{c}{2})

using sin (A + B) formula,

sin(A+B)=sinA.cosB + cosA.sinB

\implies \sf sin((\frac{A+B}{2})+(\frac{C}{2}))

\implies \sf sin(\frac{A+B+C}{2})

we know the sum of interior angles of triangle is 180° or π

Therefore,

\implies \sf sin(\frac{\pi}{2})

\implies\boxed{\large{\sf 1}}

\implies \sf RHS

Hence proved .

Similar questions