if a,b,c are the interior angles of the triangle ,prove that tan[b+c/2]=cotA/2
Answers
Answered by
6
Given---> If A , B , C are the interior angles of the triangle.
To prove ---> tan { ( B + C ) / 2 } = Cot A / 2
Proof ---> A, B and C are interior angle of triangle,
So , by anglesum property ,
A + B + C = 180°
=> B + C = 180° - A
Now ,
LHS= tan { ( B + C ) / 2 }
Putting , B + C = 180° - A
= tan { ( 180° - A ) / 2 }
= tan { ( 180° / 2 ) - ( A / 2 ) }
= tan { ( 90° ) - A / 2 }
We know that,
tan( 90° - θ ) = Cotθ , using it here we get
= Cot A / 2 = RHS
Additional information---->
(1) Sin ( 90° -θ ) = Cosθ
(2) Cos ( 90° - θ ) = Sinθ
(3) Cot ( 90° - θ ) = tanθ
(4) Sec ( 90° - θ ) = Cosecθ
(5) Cosec ( 90° - θ ) = Secθ
Similar questions