Math, asked by karthikpnair06, 22 days ago

If a, b, c are the lengths of a triangle so that a=xy, b=yz and c=zx, where x, y, z are natural numbers. Then x^2 +y^2+z^2 is:
A. ab/c+ bc/a+ca/b
B. a/bc+ b/can + c/ab
C. ab+bc+ac/a^2+b^2+c^2
D. a^2+b^2+c^2/ab+bc+ac​

Answers

Answered by bhavyahjariwala
0

Step-by-step explanation:

Option a is the correct answer

Answered by harsh15044
1

xy = a=> xyz = az => z = \frac{xyz}{a}

x   z = b=>xyz = by=> y = \frac{xyz}{b}

yz = c=>xyz = cx=> x = \frac{xyz}{c}

also,  

       abc = xy * xz*yz = (xyz)^2  = \frac{(b^2c^2 + c^2a^2 + a^2b^2)}{(abc)}

now,

x^2 + y^2 + z^2

= (\frac{xyz}{a})^2 + (\frac{xyz}{b})^2 + (\frac{xyz}{c})^2

= (xyz)^2 *( \frac{1}{a^2} + \frac{1}{b^2} +\frac{1}{c^2})

= \frac{(abc)(b^2c^2 + c^2a^2 + a^2b^2)}{ (abc)^2}

=\frac{b^2c^2+c^2a^2+a^2b^2}{ abc}

=\frac{b^2c^2}{abc} +\frac{c^2a^2}{abc} + \frac{a^2b^2}{abc}

= \frac{bc}{a} + \frac{ca}{b} + \frac{ab}{c}

Correct option => A

My friend, If this comes in MCQ, instead of solving try putting value in the options, that will be faster than solving this.

Similar questions