Math, asked by sasidharreddy123, 11 months ago

If a, b, c are the roots of x^3 + 2x^2 - 4x -3= 0 then the equation whose roots area/3,b/3,c/3 is
1) x2 +6x2 – 36x-81=0
2) 9x + 6x2 - 4x-1=0
3) 9r3 + 6x2 + 4x+1=0
4) x2 - 6x² + 36x +81=0...​

Answers

Answered by BrainlyPopularman
2

Answer:

GIVEN EQUATION :

 {x}^{3}  + 2 {x}^{2}  - 4x - 3 = 0

IT'S ROOTS ARE a , b , c .

TO FIND :

A NEW QUADRATIC EQUATION WHICH ROOTS ARE a/3 , b/3 , c/3 .

SOLUTION :

sum \:  \: of \:  \: roots \:  \:   =  \alpha _{1}  =  \frac{ - (cofficient \:  \: of \:  \:  {x}^{2} }{leading \:  \: cofficient}

a + b + c =  - 2

SO, SUM OF ROOTS OF NEW EQUATION

 \frac{a}{3}  +  \frac{b}{3}  +  \frac{c}{3} =  \frac{a + b + c}{3}   =  -  \frac{2}{3}

  \alpha _{2} = ab + bc + ca =  \frac{cofficient \:  \:of \:  \: x }{l.c. }  \\  \\ ab + bc + ca =  - 4

SO , FOR NEW EQUATION

 \frac{ab}{9}  +  \frac{bc}{9}  +  \frac{ca}{9}  =  -  \frac{4}{9}

multiply \:  \: of \:  \: roots(  \alpha _{3}) =  abc = -   \frac{constant}{l.c.}  \\  \\  abc = 3

FOR NEW EQUATION

 \frac{abc}{3 \times 3 \times 3}  =  \frac{abc}{27}  =  \frac{1}{9}

SO , NEW EQUATION

 {x}^{3}   +  \frac{2}{3}  {x}^{2}  -  \frac{4}{9} x -  \frac{1}{9}  = 0

9 {x}^{3}  + 6 {x}^{2}  - 4x - 1 = 0

OPTION (2) IS CORRECT...

FOLLOW ME

Similar questions