Math, asked by SmartyPants2406, 9 months ago

If a, b, c are the zeroes of x^3 – 3x + 1 = 0, then find the value of [(a - 2)(b − 2)(c - 2)]^2?

Please provide a step-by-step solution.​

Answers

Answered by ajay8949
7

f(x) =

let a,b and c are zeroes of f(x) = x³-3x+1 = 0

sum of zeroes

a + b + c = - (cofficient of x²)/(cofficient of x³)

a+b+c = - 0/1 = 0

sum of zeroes two at a time

ab + bc + ca = cofficient of x /cofficient of x³

ab + bc + ca = -3

product of zeroes

a×b×c = - constant term/ cofficient of x³

a×b×c = -1

[(a - 2)(b − 2)(c - 2)]²

[( ab - 2a - 2b + 4)(c-2)]²

[(c-2)]²[ c( ab - 2a - 2b + 4)-2(ab - 2a - 2b + 4)]²

(abc - 2ac - 2bc + 4c - 2ab + 4a + 4b - 8)²

(abc -2ab - 2bc - 2ca + 4a + 4b + 4c -8)²

(abc - 2( ab + bc +ac ) +4( a + b + c ) -8)²

(-1 -2 × -3 + 4 × 0 - 8 )²

(-1 + 6 + 0 - 8)²

(-9 + 6)²

(-3)²

9 ans

Answered by Anonymous
25

 \large\bf\underline \orange{Given:-}

  • a , b and c are Zeroes of polynomial x³-3x+1 = 0

 \large\bf\underline \orange{To \: find:-}

  • value of[(a - 2)(b − 2)(c - 2)]^2

 \huge\bf\underline \green{Solution:-}

Let α , β and γ be the zeroes of the given polynomial.

  • Let α = a
  • β = b
  • γ = c

p(x) = x³-3x+1 = 0

  • a = 1
  • b = 0
  • c = -3
  • d = 1

  \pink{\bf \alpha +   \beta +   \gamma  =  \frac{ - b}{a} }

 :  \implies \rm \: a + b + c =  \frac{0}{1}  \\  \\  :  \implies \bf \: a + b + c = 0

 \pink{ \bf \:  \alpha  \beta  +  \beta  \gamma  +  \gamma \alpha   =  \frac{c}{a} }

 :  \implies \rm \: ab + bc + ca =  \frac{ - 3}{1}  \\  \\  :  \implies \bf \: ab + bc + ca =  - 3

 \bf \pink{ \alpha  \beta  \gamma  =  \frac{ - d}{a} }

 :  \implies \rm \: abc =  \frac{ - 1}{1}  \\  \\  :  \implies \bf \: abc =  - 1

Now,

 \mapsto \rm \: [(a - 2)(b  - 2)(c - 2)]  {}^{2} \\  \\  \mapsto \rm \: [a(b - 2) - 2(b - 2)(c - 2)] {}^{2}  \\  \\  \mapsto \rm \:[ab - 2a - 2b + 4(c - 2)]  {}^{2} \\  \\  \mapsto \rm \small[c(ab - 2a - 2b + 4) - 2(ab - 2a - 2b + 4)]  {}^{2}  \\  \\  \mapsto \rm \small [abc - 2ac - 2bc + 4c - 2ab + 4a + 4b - 8] {}^{2}  \\  \\ \mapsto \rm \small[abc - 2(ac + bc + ca) + 4(a + b + c) - 8] {}^{2}  \\  \\ \mapsto \rm[ - 1 - 2( - 3) + 4(0) - 8]  {}^{2} \\  \\ \mapsto \rm[ - 1  +  6 +0 - 8]  {}^{2} \\  \\ \mapsto \rm[ 5 - 8]  {}^{2}  \\  \\ \mapsto \rm[  - 3] {}^{2}  \\  \\  \bf \red{ = 9}

Hence,

Value of   \rm \: [(a - 2)(b  - 2)(c - 2)]  {}^{2} = 9

Similar questions