If a b c are three experiment with a random experiment
Prove that
P ( A ∪ B ∪ C) = P(A) + P(B)+P(C) - P( A ∩ B) - P( B ∩ C) - P ( A ∩ C) + P ( A ∩ B ∩C) .
Answers
If a b c are three experiment with a random experiment
Prove that
P ( A ∪ B ∪ C) = P(A) + P(B)+P(C) - P( A ∩ B) - P( B ∩ C) - P ( A ∩ C) + P ( A ∩ B ∩C) .
Given :-
A B C are three experiment with a random experiment .
To Proof :-
P ( A ∪ B ∪ C) = P(A) + P(B)+P(C) - P( A ∩ B) - P( B ∩ C) - P ( A ∩ C) + P ( A ∩ B ∩C) .
Proof :-
Consider E = B U C so that
P (AUBUC) = P (A U E)
=> P(A)+ P(E)- P(A⋂E)______{1}
Now,
P(E) = P(BUC)
=> P(B) + P(C) - P(B⋂C)_____{2}
Also, A⋂E = A⋂(BUC) = (A⋂B)U(A⋂C ) [Using
distribution property of intersection of set over the union.] Thus
P(A⋂E) = P(A⋂B) + P(A⋂C) - P [(A⋂B)⋂(A⋂C)]
=> P(A⋂B) + P(A⋂C) - P[A⋂B⋂]C ______{3}
Using 2 and 3 in 1, we get
=> P ( A ∪ B ∪ C) = P(A) + P(B)+P(C) - P( A ∩ B) - P( B ∩ C) - P ( A ∩ C) + P ( A ∩ B ∩C).
______________________________________