CBSE BOARD X, asked by physicsloverhere, 1 month ago

If a,b,c are three non zero real numbers and
a+b+c = 0

Then prove that [(a-b)³+8a³]/(3a²+b²) = 3a-b​

Answers

Answered by Anonymous
72

To Prove : -

\green{\qquad\leadsto\quad \pmb  {\mathfrak{\dfrac{[(a-b)³+8a³]}{(3a²+b²) }=3a-b}}}\\

Proof :-

\qquad ☀️We are given a,b,c are non-zero real numbers and a+b+c = 0.

Formula used :-

\pink{\qquad\bigstar \quad \pmb  {\mathfrak{(a+b)³ = a³+b³+3a²b+3ab²}}}\\

\pink{\qquad\bigstar\quad \pmb  {\mathfrak{(a-b)³ = a³-b³-3a²b+3ab²}}}\\

⠀⠀⠀⠀¯‎¯‎‎‎¯‎¯¯‎¯‎‎‎¯‎‎‎¯‎¯‎¯‎‎¯‎‎‎¯‎¯‎‎‎¯‎‎‎¯‎¯‎¯‎‎‎¯‎‎¯‎‎‎¯‎‎¯‎¯‎‎‎¯‎‎‎¯‎¯‎¯‎‎¯‎¯‎‎¯‎¯¯‎¯‎¯‎‎‎¯‎¯‎‎‎¯‎‎‎¯‎‎‎¯‎‎‎¯‎

\qquad\leadsto\quad \pmb  {\mathfrak{L.H.S}}\\

\green{\qquad\leadsto\quad \pmb  {\mathfrak{\dfrac{[(a-b)³+8a³]}{(3a²+b²)}}}}\\

\qquad\leadsto\quad \pmb  {\mathfrak{\dfrac{ [ (a³-b³-3a²b+3ab²)+8a³]}{ (3a²+b²)}}}\\

\qquad\leadsto\quad \pmb  {\mathfrak{\dfrac{(a³-b³-3a²b+3ab²+8a³)}{(3a²+b²)}}}\\

\qquad\leadsto\quad \pmb  {\mathfrak{\dfrac{ (9a³-b³-3a²b+3ab²)}{(3a²+b²)}}}\\

\qquad\leadsto\quad \pmb  {\mathfrak{ \dfrac{[(9a³+3ab²)-(b³+3a²b)]}{(3a²+b²)}}}\\

\qquad\leadsto\quad \pmb  {\mathfrak{\dfrac{[3a(3a²+b²) -b(b²+3a²) ]}{ (3a²+b²)}}}\\

\qquad\leadsto\quad \pmb  {\mathfrak{\dfrac{[3a(3a²+b²) -b(3a²+b²) ] }{(3a²+b²)}}}\\

\qquad\leadsto\quad \pmb  {\mathfrak{\dfrac{ (3a²+b²)(3a-b)}{(3a²+b²)}}}\\

\green{\qquad\leadsto\quad \pmb  {\mathfrak{ 3a-b}}}\\

\qquad\leadsto\quad \pmb  {\mathfrak{R.H.S}}\\\\

\qquad \qquad Proved..!! ☀️

⠀⠀⠀⠀¯‎¯‎‎‎¯‎¯¯‎¯‎‎‎¯‎‎‎¯‎¯‎¯‎‎¯‎‎‎¯‎¯‎‎‎¯‎‎‎¯‎¯‎¯‎‎‎¯‎‎¯‎‎‎¯‎‎¯‎¯‎‎‎¯‎‎‎¯‎¯‎¯‎‎¯‎¯‎‎¯‎¯¯‎¯‎¯‎‎‎¯‎¯‎‎‎¯‎‎‎¯‎‎‎¯‎‎‎¯‎

Answered by GosmitaRay56
0

Explanation:

If a,b,c are three non zero real numbers and

a+b+c = 0

Then prove that [(a-b)³+8a³]/(3a²+b²) = 3a-b

Similar questions