Math, asked by jasandeep330, 10 months ago

if a, b, c are three rational numbers where a=2/3 , b= 4/5 andc = -5/6 verify
a. a+(b+c) =(a+b)+c
(associative property of addition )
b. a×(b×c) =(a×b)×c
(associative property of multiplication)

Answers

Answered by StarrySoul
98

Solution :

When

• a = \sf\dfrac{2}{3}

• b = \sf\dfrac{4}{5}

• c = \sf\dfrac{-5}{6}

1. Associative Property of Addition

 \longrightarrow \sf \: a + (b + c) = (a + b) + c

 \longrightarrow \sf \:  \dfrac{2}{3}  + ( \dfrac{4}{5}  +  \dfrac{ - 5}{6} ) = ( \dfrac{2}{3}  +  \dfrac{4}{5} ) +  \dfrac{ - 5}{6}

 \longrightarrow \sf \:  \dfrac{2}{3}  + ( \dfrac{4}{5}   -  \dfrac{ 5}{6} ) = ( \dfrac{2}{3}  +  \dfrac{4}{5} )  -   \dfrac{ 5}{6}

 \longrightarrow \sf \:  \dfrac{2}{3}  + ( \dfrac{24 - 25}{30}  )=  (\dfrac{10 + 12}{15}   )-   \dfrac{ 5}{6}

 \longrightarrow \sf \:  \dfrac{2}{3}   -   \dfrac{1}{30}  =  \dfrac{22}{15}   -   \dfrac{ 5}{6}

 \longrightarrow \sf \:   \dfrac{20 -1}{30}  =   \dfrac{ 44 - 25}{30}

 \longrightarrow \sf \red{ \dfrac{19}{30}  =   \dfrac{ 19}{30}  }

  • Hence,Verified!

________________________________

2. Associative Property of Multiplication :

 \longrightarrow \sf \: a \times( b \times c )=( a \times b) \times c

 \longrightarrow \sf \:  \dfrac{2}{3}  \times(  \dfrac{5}{6} \times  \dfrac{4}{3})  =(  \dfrac{2}{3}  \times  \dfrac{5}{6} ) \times  \dfrac{4}{3}

 \longrightarrow \sf \:  \dfrac{2}{3}  \times  \dfrac{20}{18}  =  \dfrac{10}{18}  \times  \dfrac{4}{3}

 \longrightarrow  \sf \:   \cancel\dfrac{40}{54} =   \cancel\dfrac{40}{54}

 \longrightarrow \sf \red{ \dfrac{20}{27}  =   \dfrac{ 20}{27}  }

  • Hence,Verified!

Answered by Itsritu
39

Answer:

For showing Full answer click on photo.

Attachments:
Similar questions