Math, asked by arani84, 10 months ago

If a, b, c are three real roots of the equation x3−6x2+5x−1=0x3-6x2+5x-1=0, then the equation, whose roots a2,b2,c2a2,b2,c2 will be ​

Answers

Answered by amitnrw
3

Given : a, b, c are three real roots of the equation x³  - 6x² + 5x − 1 = 0

To find : the equation, whose roots are a² , b² , c²

Solution:

a, b, c are three real roots of the equation  

x³  - 6x² + 5x − 1 = 0

a + b  + c  =  -(-6)/1 = 6

ab + bc + ca  = 5/1  = 5

abc   = -(-1)/1 =  1

a² , b² , c²   are  roots so need to find

a² + b² + c²     , a²b² + a²c² + b²c²    , a²b²c²

as x³ - (a² + b² + c²)x² + x( a²b² + a²c² + b²c²) -  a²b²c²  = 0  is the equation

a²b²c²  = (abc)²   = 1

(a + b  + c)²  = a² + b² + c² + 2(ab + bc + ca )

=> 6² = a² + b² + c² + 2(5)

=> a² + b² + c² = 26

ab + bc + ca  = 5

Squaring both sides

=> a²b² + a²c² + b²c²  + 2(ab²c + a²bc + abc²)  = 25

=>  a²b² + a²c² + b²c² + 2abc(b + a + c) = 25

=> a²b² + a²c² + b²c² + 2 (6) = 25

=> a²b² + a²c² + b²c² = 13

a² + b² + c² = 26     , a²b² + a²c² + b²c² = 13   , a²b²c²  = 1

x³  - 26x² + 13x − 1 = 0

x³  - 26x² + 13x − 1 = 0 is the equation  having roots a² , b² , c²

Learn more:

Obtain all other zeros of x 4 + 4 x cube minus 2 x square - 20 x ...

https://brainly.in/question/9634458

obtain all the zeros of the polynomial 8x^4+8x^3-18x^2-20x-5 if two ...

https://brainly.in/question/7286826

If two zeroes of a polynomial p(x) = x4 – 5x3 – x2 + 35x – 42 are 2 and

https://brainly.in/question/17304050

Similar questions