If a, b, c are three real roots of the equation x3−6x2+5x−1=0x3-6x2+5x-1=0, then the equation, whose roots a2,b2,c2a2,b2,c2 will be
Answers
Given : a, b, c are three real roots of the equation x³ - 6x² + 5x − 1 = 0
To find : the equation, whose roots are a² , b² , c²
Solution:
a, b, c are three real roots of the equation
x³ - 6x² + 5x − 1 = 0
a + b + c = -(-6)/1 = 6
ab + bc + ca = 5/1 = 5
abc = -(-1)/1 = 1
a² , b² , c² are roots so need to find
a² + b² + c² , a²b² + a²c² + b²c² , a²b²c²
as x³ - (a² + b² + c²)x² + x( a²b² + a²c² + b²c²) - a²b²c² = 0 is the equation
a²b²c² = (abc)² = 1
(a + b + c)² = a² + b² + c² + 2(ab + bc + ca )
=> 6² = a² + b² + c² + 2(5)
=> a² + b² + c² = 26
ab + bc + ca = 5
Squaring both sides
=> a²b² + a²c² + b²c² + 2(ab²c + a²bc + abc²) = 25
=> a²b² + a²c² + b²c² + 2abc(b + a + c) = 25
=> a²b² + a²c² + b²c² + 2 (6) = 25
=> a²b² + a²c² + b²c² = 13
a² + b² + c² = 26 , a²b² + a²c² + b²c² = 13 , a²b²c² = 1
x³ - 26x² + 13x − 1 = 0
x³ - 26x² + 13x − 1 = 0 is the equation having roots a² , b² , c²
Learn more:
Obtain all other zeros of x 4 + 4 x cube minus 2 x square - 20 x ...
https://brainly.in/question/9634458
obtain all the zeros of the polynomial 8x^4+8x^3-18x^2-20x-5 if two ...
https://brainly.in/question/7286826
If two zeroes of a polynomial p(x) = x4 – 5x3 – x2 + 35x – 42 are 2 and
https://brainly.in/question/17304050