Math, asked by amansinghaster9767, 3 months ago

If a,b,c are unit vectors such that a is perpendicular to plane of b and c amd the sngle between b and c is 60 the |a+b+c| is

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

★Given that

\rm :\longmapsto\:\vec{a}, \: \vec{b}, \: \vec{c} \: are \: unit \: vectors.

\bf\implies \: |\vec{a}|  =  |\vec{b}|  =  |\vec{c}|  = 1 -  -  - (1)

★Again given that,

\rm :\longmapsto\:\vec{a} \: is \:  \perp \: to \: plane \: of \: \vec{b} \: and \: \vec{c}

\bf\implies \:\vec{a} \:  \parallel \: \vec{b} \times \vec{c}

\bf\implies \:\vec{a}  \: \perp \: \vec{b} \: and \: \vec{a} \:  \perp \: \vec{c}

\bf\implies \:\vec{a} \: . \: \vec{b} = 0 \:  \: and \:  \: \vec{b} \: . \: \vec{c} = 0 \:  \:  -  - (2)

★Again provided that

\rm :\longmapsto\:Angle \: between \: \vec{b} \: and \: \vec{c} \: is \: 60 \degree

Consider,

\rm :\longmapsto\:\vec{b} \: . \: \vec{c}

\rm \:  =  \:  \: \: |\vec{b}|  |\vec{c}| cos60\degree

\rm \:  =  \:  \: \:1 \times 1 \times \dfrac{1}{2}

\rm \:  =  \:  \: \:\dfrac{1}{2}

\bf\implies \:\vec{b} \: . \: \vec{c} = \dfrac{1}{2}  -  -  - (3)

Now,

Consider,

\bf :\longmapsto\:  { |\vec{a} + \vec{b} + \vec{c}|}^{2}

\rm \:  =  \:  \: \:(\vec{a} + \vec{b} + \vec{c}).(\vec{a} + \vec{b} + \vec{c})

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \:  { |\vec{a}| }^{2}  = \vec{a}.\vec{a}\bigg \}}

\rm \:  =  \:  \: \:\vec{a}.\vec{a} + \vec{a}.\vec{b} + \vec{a}.\vec{c} + \vec{b}.\vec{a} + \vec{b}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a} + \vec{c}.\vec{b} + \vec{c}.\vec{c}

\rm \:  =  \:  \: \: { |\vec{a}| }^{2} +  { |\vec{b}| }^{2} +  { |\vec{c}| }^{2} + 2(\vec{a}.\vec{b}) + 2(\vec{b}.\vec{c}) + 2(\vec{c}.\vec{a})

\red{\bigg \{ \because \: \vec{a}.\vec{a} =  { |\vec{a}| }^{2}  \: and \: \vec{a}.\vec{b} = \vec{b}.\vec{a}\bigg \}}

\rm \:  =  \:  \: \:1 + 1 + 1 + 2 \times 0 + 2 \times \dfrac{1}{2} + 2 \times 0

\red{\bigg \{ \because \:using \: equations \: (1),(2),(3) \: and \: (4) \bigg \}}

\rm \:  =  \:  \: \:4

\rm \:  =  \:  \: \: {2}^{2}

\bf\implies \: |\vec{a} + \vec{b} + \vec{c}|  = 2

Additional information :-

\rm :\longmapsto\:\vec{a} \times \vec{b} =  -  \: \vec{b} \times \vec{a}

\rm :\longmapsto\:\vec{a} \times \vec{a} = 0

\rm :\longmapsto\:\vec{a}.\vec{a} =  { |\vec{a}| }^{2}

\rm :\longmapsto\:\vec{a}.\vec{b} \:  =  \: \vec{b}.\vec{a}

\rm :\longmapsto\:\vec{a}.\vec{b} = 0 \: \rm \implies\: \: \vec{a} \:  \perp \: \vec{b}

\rm :\longmapsto\:\vec{a} \:  \perp \: \vec{b} \: \rm \implies\: \: \vec{a} \:.\: \vec{b} = 0

\rm :\longmapsto\:\vec{a} \times \vec{b} = 0 \: \rm \implies\: \: \vec{a} \:  \parallel \: \vec{b}

\rm :\longmapsto\:\vec{a}.\vec{b} =  |\vec{a}|  |\vec{b}| \: cos \theta

\rm :\longmapsto\: |\vec{a} \times \vec{b}| =  |\vec{a}| |\vec{b}| sin \theta

\rm :\longmapsto\: {(\vec{a}.\vec{b})}^{2}  +  { |\vec{a} \times \vec{b}| }^{2} =  { |\vec{a}| }^{2} { |\vec{b}| }^{2}

Similar questions