Math, asked by hhemaliraval, 6 hours ago

If a, b, c are whole numbers then we have ; a x (b-c) = (a x b) - (a x c) only if *

Answers

Answered by kwlgmng
0

Answer:

Given :

The base and height of a triangle are in the ratio 4:3.

If the base is increased by 4 cm and the height is decreased by 2 cm, the area of the triangle remains the same.

To Find :

Base and Height of the Triangle .

Solution :

\longmapsto\tt{Let\:base\:be(b)=4x}⟼Letbasebe(b)=4x

\longmapsto\tt{Let\:height\:be(h)=3x}⟼Letheightbe(h)=3x

Using Formula :

\longmapsto\tt\boxed{Area\:of\:Triangle=\dfrac{1}{2}\times{b}\times{h}}⟼

AreaofTriangle=

2

1

×b×h

Putting Values :

\longmapsto\tt{\dfrac{1}{{\cancel{2}}}\times{{\cancel{4x}}}\times{3x}}⟼

2

1

×

4x

×3x

\longmapsto\tt{2x\times{3x}}⟼2x×3x

\longmapsto\tt\bf{6x}^{2}⟼6x

2

Now ,

If the base is increased by 4 cm and the height is decreased by 2 cm, the area of the triangle remains the same.

\longmapsto\tt{Base=4x+4}⟼Base=4x+4

\longmapsto\tt{Height=3x-2}⟼Height=3x−2

Using Formula :

\longmapsto\tt\boxed{Area\:of\:Triangle=\dfrac{1}{2}\times{b}\times{h}}⟼

AreaofTriangle=

2

1

×b×h

Putting Values :

\longmapsto\tt{{6x}^{2}=\dfrac{1}{2}\times{(4x+4)}\times{(3x-2)}}⟼6x

2

=

2

1

×(4x+4)×(3x−2)

\longmapsto\tt{6x}^{2}\times{2}=(4x+4)\:\:(3x-2)⟼6x

2

×2=(4x+4)(3x−2)

\longmapsto\tt{{{\cancel{12x}^{2}}}={\cancel{{12x}^{2}}}-8x+12x-8}⟼

12x

2

=

12x

2

−8x+12x−8

\longmapsto\tt{-8x+12x-8=0}⟼−8x+12x−8=0

\longmapsto\tt{4x-8=0}⟼4x−8=0

\longmapsto\tt{4x=8}⟼4x=8

\longmapsto\tt{x=\cancel\dfrac{8}{4}}⟼x=

4

8

\longmapsto\tt\bf{x=2}⟼x=2

Value of x is 2 .

Therefore :

\longmapsto\tt{Base\:of\:Triangle=4(2)}⟼BaseofTriangle=4(2)

\longmapsto\tt\bf{8\:cm}⟼8cm

\longmapsto\tt{Height\:of\:Triangle=3(2)}⟼HeightofTriangle=3(2)

\longmapsto\tt\bf{6\:cm}⟼6cm

Similar questions