Math, asked by jeet7232, 1 year ago

if a-b/c +b-c/a+c-a/b=0 and a-b+c not equal to 0 then proved 1/a=1/b+1/c

Answers

Answered by Crazycrystal
8
The correct question is :If a-b/c+b-c/a+c-a/b=1 then prove that 1/a=1/a+1/c
Answer:-(a-b)/c +(b-c)/a +(c+a)/b=1

(a-b)/c +(b-c)/a +(c+a)/b=1+1-1

(a-b)/c+1 +(b-c)/a-1 +(c+a)/b-1=0

{(a-b)/c+1} +{(b-c)/a-1} +{(c+a)/b-1}=0

(a-b+c)/c +(b-c-a)/a +(c+a-b)/b=0

(a-b+c)/c -(-b+c+a)/a +(c+a-b)/b=0

(a-b+c)/c -(a-b+c)/a +(a-b+c)/b=0

(a-b+c)(1/c-1/a+1/b)=0
1/a=1/b+1/c
HENCE PROVED
Similar questions