if (a-b)/c +(b-c)/a+(c-a)/b=1 and (a-b+c) is not equal to zero then prove that 1/a=1/b+1/c
Answers
Answered by
0
(Proved)
Step-by-step explanation:
Given that,
⇒ ab(a - b) + bc(b - c) + ca(c - a) = abc
⇒ a²b - ab² + b²c - bc² + c²a - ca² = abc
⇒ (a²b + a²c - abc) - (b²a + abc - b²c) + (abc + ac² - bc²) = 0
⇒ a(ab + ac - bc) - b(ab + ac - bc) + c(ab + ac - bc) = 0
⇒ (a - b + c)(ab + ac - bc) = 0
⇒ ab + ac - bc = 0 {Since, (a - b + c) ≠ 0}
⇒ ab + ac = bc
⇒ (Proved)
Similar questions