Math, asked by ramakantalahiri, 3 months ago

if a/b+c +b/c+a +c/a+b =1 prove A2/b+c +b2/c+a +C2/a+b=0​

Answers

Answered by muskanperween225
3

Step-by-step explanation:

 \frac{a}{b + c}  +  \frac{b}{c + a}  +  \frac{c}{a + b}  = 1

therefore,

a = b + c

b = c + a

c = a + b

Now,

 \frac{ {a}^{2} }{b + c}  +   \frac{ {b}^{2} }{c + a}  +  \frac{ {c}^{2} }{a + b}

 = ( \frac{ {a}^{2} }{b + c}  + a) + (  \frac{ {b}^{2} }{c + a}  + b) + ( \frac{ {c}^{2} }{a + b}  + c) - (a + b + c)

 = ( \frac{ {a}^{2} + ab + ac }{b + c} ) + ( \frac{ {b}^{2} + bc + ab }{c + a} ) + ( \frac{ {c}^{2} + ac + bc }{a + b} ) - (a + b + c)

 =  \frac{a(a + b + c)}{b + c}  +  \frac{b(b + c + a)}{c + a}  +  \frac{c(c + a + b)}{a + b}  - (a + b + c)

 = (a + b + c)( \frac{a}{b + c}  +  \frac{b}{c + a}  +  \frac{c}{a + b} ) - (a + b + c)

 = (a + b + c)( \frac{a}{a}  +  \frac{b}{b}  +  \frac{c}{c} ) - (a + b + c)

 = (a + b + c) \times 1 - (a + b + c)

 = 0

L. H. S = R. H. S (proved)

Similar questions