Math, asked by utpalchand357, 7 months ago

if a/(b+c) + b/(c+a) + c/(a+b) =1 then prove that a²/(b+c) + b²/(c+a) + c²/(a+b) =0

Answers

Answered by Anonymous
10

Given :

\bf{\dfrac{a}{(b + c)} + \dfrac{b}{(c + a)} + \dfrac{c}{(a + b)} = 1}

To find :

To Proof that ,

\bf{\dfrac{a^{2}}{(b + c)} + \dfrac{b^{2}}{(c + a)} + \dfrac{c^{2}}{(a + b)} = 0}

Solution :

:\implies \bf{\dfrac{a}{(b + c)} + \dfrac{b}{(c + a)} + \dfrac{c}{(a + b)} = 1} \\ \\ \\

By multiplying (a + b + c) , we get : \\ \\ \\

:\implies \bf{\bigg(\dfrac{a}{(b + c)} + \dfrac{b}{(c + a)} + \dfrac{c}{(a + b)}\bigg) \times (a + b + c) = 1 \times (a + b + c)} \\ \\ \\

:\implies \bf{\dfrac{a(a + b + c)}{(b + c)} + \dfrac{b(a + b + c)}{(c + a)} + \dfrac{c(a + b + c)}{(a + b)} = a + b + c} \\ \\ \\

:\implies \bf{\dfrac{a^{2} + ab + ac}{(b + c)} + \dfrac{ab + b^{2} + cb}{(c + a)} + \dfrac{ac + bc + c^{2}}{(a + b)} = a + b + c} \\ \\ \\

We can write , y(x + y + z) as , y² + yx + yz so by using this, we get the Equation as :- \\ \\ \\

:\implies \bf{\dfrac{a^{2}}{(b + c)} + \dfrac{ab + ac}{(b + c)} + \dfrac{b^{2}}{(c + a)} + \dfrac{ab + cb}{(c + a)} + \dfrac{c^{2}}{(a + b)} + \dfrac{ac + bc}{(a + b)} = a + b + c} \\ \\ \\

:\implies \bf{\dfrac{a^{2}}{(b + c)} + \dfrac{a(b + c)}{(b + c)} + \dfrac{b^{2}}{(c + a)} + \dfrac{b(a + c)}{(c + a)} + \dfrac{c^{2}}{(a + b)} + \dfrac{c(a + b)}{(a + b)} = a + b + c} \\ \\ \\

:\implies \bf{\dfrac{a^{2}}{(b + c)} + a + \dfrac{b^{2}}{(c + a)} + a + \dfrac{c^{2}}{(a + b)} + c = a + b + c} \\ \\ \\

:\implies \bf{\dfrac{a^{2}}{(b + c)} + \dfrac{b^{2}}{(c + a)} + \dfrac{c^{2}}{(a + b)} + (a + b + c) = a + b + c} \\ \\ \\

:\implies \bf{\dfrac{a^{2}}{(b + c)} + \dfrac{b^{2}}{(c + a)} + \dfrac{c^{2}}{(a + b)} = a + b + c - (a + b + c)} \\ \\ \\

:\implies \bf{\dfrac{a^{2}}{(b + c)} + \dfrac{b^{2}}{(c + a)} + \dfrac{c^{2}}{(a + b)} = a + b + c - a - b - c} \\ \\ \\

:\implies \bf{\dfrac{a^{2}}{(b + c)} + \dfrac{b^{2}}{(c + a)} + \dfrac{c^{2}}{(a + b)} = \not{a} + \not{b} + \not{c} - \not{a} - \not{b} - \not{c}} \\ \\ \\

:\implies \bf{\dfrac{a^{2}}{(b + c)} + \dfrac{b^{2}}{(c + a)} + \dfrac{c^{2}}{(a + b)} = 0} \\ \\ \\

\boxed{\therefore \bf{\dfrac{a^{2}}{(b + c)} + \dfrac{b^{2}}{(c + a)} + \dfrac{c^{2}}{(a + b)} = 0}} \\ \\ \\

Hence,

\bf{\dfrac{a^{2}}{(b + c)} + \dfrac{b^{2}}{(c + a)} + \dfrac{c^{2}}{(a + b)} = 0}

Proved !!

Similar questions