If a/b+c=b/c+a=c/a+b and a+b+c is not equal to zero then what is the value of each ratio
Answers
Answered by
10
Answer is -1 or 1/2
Explanation :
Since in the question it is asked that "What is each fraction equal to" I assumed the fractions are (a/(b+c)),(b/(c+a)),(c/(a+b))(a/(b+c)),(b/(c+a)),(c/(a+b)).
ab+c=ba+c=ca+bab+c=ba+c=ca+b
Now,
ab+c=ba+cab+c=ba+c
⟹a(a+c)=b(b+c)⟹a(a+c)=b(b+c)
⟹a2+ac=b2+bc⟹a2+ac=b2+bc
⟹a2−b2=c(b−a)⟹a2−b2=c(b−a)
⟹(a−b)(a+b)=c(b−a)⟹(a−b)(a+b)=c(b−a)
⟹(a+b)=−c⟹(a+b)=−c or a=ba=b
Case 1 :
If (a+b)=−c(a+b)=−c
Then,
c(a+b)=−1c(a+b)=−1
∴ab+c=ba+c=ca+b=−1∴ab+c=ba+c=ca+b=−1
Case 2 :
If a=ba=b
Then
ab+c=ca+bab+c=ca+b
⟹aa+c=ca+a⟹aa+c=ca+a
⟹aa+c=c2a⟹aa+c=c2a
Solving the quadratic equation we get c=−2a,ac=−2a,a.
So, we have again two cases, either a=b=ca=b=c or a=b=−c/2a=b=−c/2
Case 2(a):
If a=b=ca=b=c,
then
ab+c=ba+c=ca+b=12ab+c=ba+c=ca+b=12
Case 2(b):
If a=b=−c/2a=b=−c/2
ab+c=ba+c=ca+b=−1ab+c=ba+c=ca+b=−1
Conclusion:
There are two possibilities, fraction can be either -1 or 1/2.
OR
Let each ratio equal k. So,
a=bk+ck b+ak+ck c=ak+bk
Add the 3 equations,a+b+c= 2k(a+b+c),
If a+b+c is non zero,
k=0.5
If a+b+c=0
a=-(b+c)
And each ratio equals -1
Explanation :
Since in the question it is asked that "What is each fraction equal to" I assumed the fractions are (a/(b+c)),(b/(c+a)),(c/(a+b))(a/(b+c)),(b/(c+a)),(c/(a+b)).
ab+c=ba+c=ca+bab+c=ba+c=ca+b
Now,
ab+c=ba+cab+c=ba+c
⟹a(a+c)=b(b+c)⟹a(a+c)=b(b+c)
⟹a2+ac=b2+bc⟹a2+ac=b2+bc
⟹a2−b2=c(b−a)⟹a2−b2=c(b−a)
⟹(a−b)(a+b)=c(b−a)⟹(a−b)(a+b)=c(b−a)
⟹(a+b)=−c⟹(a+b)=−c or a=ba=b
Case 1 :
If (a+b)=−c(a+b)=−c
Then,
c(a+b)=−1c(a+b)=−1
∴ab+c=ba+c=ca+b=−1∴ab+c=ba+c=ca+b=−1
Case 2 :
If a=ba=b
Then
ab+c=ca+bab+c=ca+b
⟹aa+c=ca+a⟹aa+c=ca+a
⟹aa+c=c2a⟹aa+c=c2a
Solving the quadratic equation we get c=−2a,ac=−2a,a.
So, we have again two cases, either a=b=ca=b=c or a=b=−c/2a=b=−c/2
Case 2(a):
If a=b=ca=b=c,
then
ab+c=ba+c=ca+b=12ab+c=ba+c=ca+b=12
Case 2(b):
If a=b=−c/2a=b=−c/2
ab+c=ba+c=ca+b=−1ab+c=ba+c=ca+b=−1
Conclusion:
There are two possibilities, fraction can be either -1 or 1/2.
OR
Let each ratio equal k. So,
a=bk+ck b+ak+ck c=ak+bk
Add the 3 equations,a+b+c= 2k(a+b+c),
If a+b+c is non zero,
k=0.5
If a+b+c=0
a=-(b+c)
And each ratio equals -1
Adityabrainly2003:
please mark as brainliest
Answered by
10
Answer: 1/2
Explanation:a/(b+c) = b/(c+a) = c/(a+b)
On using 》》》》 sum of antecedents /sum of consequents
》(a+b+c)/(a+b+c+a+b+c)
》(a+b+c)/(2a+2b+2c)
》(a+b+c)/(2(a+b+c))
》cutting (a+b+c)
WE GET 1/2 or 0.5
Hope it helps you
Mark as BRAINLIEST
THANKSGIVING
Similar questions
Math,
7 months ago
Math,
7 months ago
English,
7 months ago
English,
1 year ago
India Languages,
1 year ago