If a,b,c be in H.P prove that 1\b-a+1\b-c=1\a+1\c
Answers
Answered by
27
Hey there!
If a, b, c are in H. P ( Harmonic progression)
Then 1/a, 1/b, 1/c are in A. P.
So,
2/b = 1/a + 1/c.
2/b = a + c /ac
2ac = ( a + c) b
b = 2ac / a + c
Now,
Given,
L. H. S
1/b - a + 1/b - c
Substitute value of b in the equation
1/(2ac/a+c) - a + 1/(2ac/a+c) - c
= (a+c) /2ac - a(a+c) + (a+c) / 2ac - c ( a + c)
= a+ c /( 2ac - a² - ac) + a+c/ ( 2ac - ac - c²)
= a + c / ( ac - a²) + ( a + c) / ( ac - c²).
= a + c / a ( c - a) + a + c / c ( a - c)
= [a + c / c - a] [ 1/a - 1/c]
= [a + c / c - a] [ c - a / ac]
= a + c / ca
= a/ca + c/ca
= 1/c + 1/a
= R. H. S
Hence proved!
If a, b, c are in H. P ( Harmonic progression)
Then 1/a, 1/b, 1/c are in A. P.
So,
2/b = 1/a + 1/c.
2/b = a + c /ac
2ac = ( a + c) b
b = 2ac / a + c
Now,
Given,
L. H. S
1/b - a + 1/b - c
Substitute value of b in the equation
1/(2ac/a+c) - a + 1/(2ac/a+c) - c
= (a+c) /2ac - a(a+c) + (a+c) / 2ac - c ( a + c)
= a+ c /( 2ac - a² - ac) + a+c/ ( 2ac - ac - c²)
= a + c / ( ac - a²) + ( a + c) / ( ac - c²).
= a + c / a ( c - a) + a + c / c ( a - c)
= [a + c / c - a] [ 1/a - 1/c]
= [a + c / c - a] [ c - a / ac]
= a + c / ca
= a/ca + c/ca
= 1/c + 1/a
= R. H. S
Hence proved!
Similar questions