If a b c be resp. the sum of n term, and the next n term and the next n term of a GP. prove a,b,c are in GP
Answers
Answered by
0
Step-by-step explanation:
Let x be the first term & r be the common ratio of the G.P
a=
1−r
x(1−r
n
)
………(1)
b=
1−r
x(1−r
2n
)
−a
⇒a+b=
1−r
x(1−r
2n
)
…..(2)
c=
1−r
x(1−r
3n
)
−(a+b)
⇒a+b+c=
1−r
x(1−r
3n
)
……(3)
(2)÷(1)
a
a+b
=
1−r
n
1−r
2n
1+
a
b
=1+r
n
b=ar
n
(3)÷(2)
a+b
a+b+c
=
1−r
2n
1−r
3n
1+
a+b
c
=
1+r
n
1+r
n
+r
2n
a+b
c
=
1+r
n
r
2n
a+ar
n
c
=
1+r
n
r
2n
a(1+r
n
)
c
=
1+r
n
r
2n
c=ar
2n
We can say that a,ar
n
,ar
2n
are in G.P.
∴ a, b, c are in G.P.
Similar questions