If a+b+c+d=1 then find the minimum value of (1+a)(1+b)(1+c)(1+d) ?
Options:-
A)1
B)(1/2)^3
C)(3/4)^3
D)(5/4)^4
Answers
Answered by
1
Answer:
option 1 is answer
Step-by-step explanation:
(1+a)(1+b)(1+c)(1+d)
= (1 + ab + a + b)(1 + cd + c + d)
= 1 + cd + c + d + ab + abcd + abc + abd + a + acd + ac + ad + b + bcd + bc + bd
= 1 + abcd + a + b + c + d + ab + ac + bc + bd + ad + cd + abc + abd + acd + bcd
abcd = 1
so abc + d ≥2 , abd + c ≥2 , bcd + a ≥2 , acd + b ≥2
≥ 1 + 1 + 2 + 2 + 2 + 2 + ab + ac + bc + bd + ad + cd
abcd = 1
so ab + cd ≥ 2 , ac + bd ≥ 2 , ad + bc ≥ 2
≥ 10 + 2 +2 + 2
≥ 16
So 16 is the right answer
Verification let say a , b , c , d all are = 1
abcd = 1
(1+a)(1+b)(1+c)(1+d) = 2 * 2* 2* 2 = 16
Answered by
6
Answer:
option number is 1 this is right answer
Similar questions