If (a + b + c + d) (a - b - c + d) = (a + b - c - d) (a - b + c - d), prove that a: b = c: d
Answers
Answered by
3
Answer:
Given:
(a + b + c + d) (a - b - c + d) = (a + b - c - d) (a - b + c - d)
Simplifying left side:
(a + b + c + d) (a - b - c + d)=
a²-ab-ac+ad+ab-b²-bc+bd+ac-bc-c²+cd+ad-bd-cd+d²=
a²+2ad-b²-c²+d²
Simplifying right side:
(a + b - c - d) (a - b + c - d)=
a²-ab+ac-ad+ab-b²+bc-bd-ac+bc-c²+cd-ad+bd-cd+d²=
a²-2ad-b²+2bc-c²+d²
Now time to compare both sides:
a²+2ad-b²-c²+d²=a²-2ad-b²+2bc-c²+d²
2ad=-2ad+2bc
4ad=2bc
2ad=bc
2a:b=c:d, Proved
Answered by
1
a^2 - b^2 - c^2 + d^2 = a^2 - b^2 + c^2 - d^2
a - b - c + d =a - b + c - d
2d=2c
d=c
Similar questions