, if a b c d are in continued proportion then prove that B minus C whole square + c minus a whole square + d minus b whole square is equals to a minus d whole square
Answers
Answered by
4
Answer:
d-a the whole square
Step-by-step explanation:
Answered by
1
Answer:
a,b,c and d are in continued proportion.
This means a/b=b/c=c/d.
Therefore b^2=ac, c^2=bd, bc=ad
BY USING THIS FORMULA:-
a^2+b^2+c^2 =(a+b+c)^2-2(ab+bc+ca)
LHS: (b-c)^2+(c-a)^2+(d-b)^2
Putting the values of a,b and c in the equation we get:
(a+b+c)^2-2(ab+bc+ca)
=(b-c+c-a+d-b)^2-2(bc-ba-c^2++ca+cd-bc-ad+ab+bd-b^2-cd+cb)
=(-a+d)^2-2(ca-ad+bd-b^2)
=a^2 +d^2-2ad-2ca-2bd +2b^2+2ad
=a^2+2b^2+d^2-2ca-2bd---------------------------------(equn1)
¶Putting the values of b^2,c^2,bc=ad in equation 1 we get,
=a^2+2ac+d^2-2ca-2ad
=a^2+d^2-2ad
=(a-d)^2 HENCE PROVED.
LHS=RHS=(a-d)^2.
From Samannay Roy.
Similar questions
Social Sciences,
4 months ago
English,
4 months ago
English,
8 months ago
Math,
8 months ago
Math,
11 months ago
Social Sciences,
11 months ago