If a,b,c,d are in continuef proportion then show that (b-c)²+(a-c)²+(b-d)²=(a-d)².
Answers
Answered by
1
Answer :
We know when a , b ,c , d are in continued proportion , we get
ab = bc = cd
Let
ab = bc = cd = k , Then a = bk , b = ck And c = dk
∴ b =ck = dk.k = dk2 , a = bk = dk2.k = dk3
∴ a = dk3 , b = dk2 , c = dk
We have to prove
( b -c )2 + ( c -a )2 + ( b - d )2 = ( a - d )2
Taking L.H.S. and substitute all values As :
⇒ ( dk2 - dk )2 + ( dk - dk3 )2 + ( dk2 - d )2
⇒[ d2k4 + d2k2 - 2d2k3 ] + [ d2k2 + d2k6 - 2d2k4 ] + [ d2k4 + d2 - 2d2k2 ]
⇒ d2k4 + d2k2 - 2d2k3 + d2k2 + d2k6 - 2d2k4 + d2k4 + d2 - 2d2k2
⇒d2 + d2k6 - 2d2k3 ---------------- ( 1 )
Now taking R.H.S. And substitute values , we get
⇒( dk3- d )2
⇒[ d2k6+ d2 - 2d2k3]
⇒d2 + d2k6 - 2d2k3 ---------------- ( 2 )
Now we can see from equation 1 and 2 that
L.H.S. = R.H.S. ( Hence proved )
We know when a , b ,c , d are in continued proportion , we get
ab = bc = cd
Let
ab = bc = cd = k , Then a = bk , b = ck And c = dk
∴ b =ck = dk.k = dk2 , a = bk = dk2.k = dk3
∴ a = dk3 , b = dk2 , c = dk
We have to prove
( b -c )2 + ( c -a )2 + ( b - d )2 = ( a - d )2
Taking L.H.S. and substitute all values As :
⇒ ( dk2 - dk )2 + ( dk - dk3 )2 + ( dk2 - d )2
⇒[ d2k4 + d2k2 - 2d2k3 ] + [ d2k2 + d2k6 - 2d2k4 ] + [ d2k4 + d2 - 2d2k2 ]
⇒ d2k4 + d2k2 - 2d2k3 + d2k2 + d2k6 - 2d2k4 + d2k4 + d2 - 2d2k2
⇒d2 + d2k6 - 2d2k3 ---------------- ( 1 )
Now taking R.H.S. And substitute values , we get
⇒( dk3- d )2
⇒[ d2k6+ d2 - 2d2k3]
⇒d2 + d2k6 - 2d2k3 ---------------- ( 2 )
Now we can see from equation 1 and 2 that
L.H.S. = R.H.S. ( Hence proved )
bhumika2488:
hoe u qot can u explain
Similar questions