Math, asked by InshaHashmi8872, 1 year ago

If a, b, c, d are in G.P. then prove that
i) a+b, b+c, c+d are also in G.P.
ii) (b-c)² + (c-a)² + (d-b)² = (a-d)²

Answers

Answered by MaheswariS
4

Answer:


Concept:


The general form of G.P is

a, ar, ar², ar³.............

a - first term of GP

r - common ratio


In any GP,\frac{t_2}{t_1}=\frac{t_3}{t_2}


1. since a, b, c, d are in G.P,

b=ar, c=ar², d=ar³


Now,

\frac{b+c}{a+b}=\frac{ar+ar^2}{a+ar}=\frac{r(a+ar)}{a+ar}=r\\\\\frac{c+d}{b+c}=\frac{ar^2+ar^3}{ar+ar^2}=\frac{r(ar+ar^2)}{ar+ar^2}=r

This implies,


\frac{b+c}{a+b}=\frac{c+d}{b+c}

By property of G.P,


a+b, b+c, c+d are in G.P.



2.

(b-c)² + (c-a)² + (d-b)²

=(ar-ar²)² + (ar²-a)² + (ar³-ar)²

=a²(r-r²)² + a²(r²-1)² + a²(r³-r)²

=a²[(r-r²)² + (r²-1)² + (r³-r)²}

=a^2[r^2+r^4-2r^3+r^4+1-2r^2+r^6+r^2-2r^4] \\\\=a^2[r^6+1-2r^3] \\\\=a^2(1-r^3)^2\\\\ =[a(1-r^3)]^2\\\\ =[a-ar^3]^2 \\\\=[a-d]^2

Similar questions