Math, asked by smashhulk, 4 months ago

if a,b,c,d are in gp prove that (a^n+b^n), (b^n+c^n), (c^n+d^n) are in gp​

Answers

Answered by mathdude500
1

Concept used :-

If we want to show that a, b, c are in GP, then we have to show that

 \boxed{ \red{ \tt \: \dfrac{b}{a}  = \dfrac{c}{b} }}

\large\underline\purple{\bold{Solution :-  }}

Let common ratio be r.

Since a, b, c, d are in GP.

So,

\begin{gathered}\begin{gathered}\bf Let -  \begin{cases} &\sf{a = a} \\ &\sf{b \:  = ar}\\ &\sf{c \:  =  {ar}^{2} }\\ &\sf{d \:  =  {ar}^{3} } \end{cases}\end{gathered}\end{gathered}

Consider

 \tt \: \dfrac{ {b}^{n}  +  {c}^{n} }{ {a}^{n} +   {b}^{n} }

On substituting the values of a, b, c we get

 =  \:  \tt \: \dfrac{ {(ar)}^{n}  +  { {(ar}^{2}) }^{n} }{ {a}^{n} +   {(ar)}^{n} }

 =  \tt \: \dfrac{  {a}^{n} {r}^{n} +  {a}^{n}  {r}^{2n}  }{ {a}^{n} +  {a}^{n}  {r}^{n}  }

 =  \tt \: \dfrac{{a}^{n} {r}^{n}(1 +  {r}^{n}) }{{a}^{n}(1 +  {r}^{n})}

 =  \tt \: {r}^{n} -  -  - (i)

Consider

 \tt \: \dfrac{{c}^{n}  + {d}^{n}}{{b}^{n}  + {c}^{n}}

On substituting the values of b, c, d, we get

 =  \tt \: \dfrac{ { {(ar}^{2}) }^{n}  +  { ({ar}^{3} )}^{n} }{ {(ar)}^{n} +  { {(ar}^{2}) }^{n}  }

 =  \tt \: \dfrac{{a}^{n} {r}^{2n} + {a}^{n} {r}^{3n}}{{a}^{n} {r}^{n} + {a}^{n} {r}^{2n}}

 =  \tt \: \dfrac{{a}^{n} {r}^{2n}(1 +  {r}^{n})}{{a}^{n} {r}^{n}(1 +  {r}^{n} )}

 =  \tt \: {r}^{n} -  -  - (ii)

From (i) and (ii), we conclude that

 \tt \: \dfrac{ {b}^{n}  +  {c}^{n} }{ {a}^{n} +   {b}^{n} }  = \dfrac{{c}^{n}  + {d}^{n}}{{b}^{n}  + {c}^{n}}

\: \tt \:  ({a}^{n} +   {b}^{n}),({b}^{n}  +  {c}^{n}),({c}^{n}  +  {d}^{n}) \: are \: in \: GP

\large{\boxed{\boxed{\bf{Hence, Proved}}}}

Similar questions