Math, asked by kaustubhketanlunkad, 3 months ago

If a, b,c ,
d are in GP, then Prove that
a²-b² , b²-c² , c²-d² are also in G.P.

Answers

Answered by Dd19
3

Step-by-step explanation:

a, b, c, d are in GP

Let the common ratio be r

1st term = a

2nd term = ar = b

3rd term = a {r}^{2}  = c

4th term = a {r}^{3}  = d

 {a}^{2}  -  {b}^{2}  =  {a}^{2}  -  {(ar)}^{2}  =  {a}^{2} (1 -  {r}^{2} )

 {b}^{2}  -  {c}^{2}  =  {(ar)}^{2}  -  { (a{r}^{2}) }^{2}  =  {a}^{2}  {r}^{2} -  {a}^{2}   {r}^{4}  =  {a}^{2} {r}^{2}  (1 -  {r}^{2} )

 {c}^{2}  -  {d}^{2}  =  {(a {r}^{2}) }^{2}  -  {(a {r}^{3}) }^{2}  =  {a}^{2}  {r}^{4}  -  {a}^{2}  {r}^{6}  =  {a}^{2}  {r}^{4} (1 -  {r}^{2} )

From above

 {a}^{2}  -  {b}^{2}  =  {a}^{2} (1 -  {r}^{2} )

 {b}^{2}  -  {c}^{2}  =  {a}^{2} (1 -  {r}^{2} ) \times  {r}^{2}

 {c}^{2}  -  {d}^{2}  =  {a}^{2} (1 -  {r}^{2} ) \times  {r}^{4}

Therefore,  {a}^{2}  -  {b}^{2}, \: {b}^{2}  -  {c}^{2}, \: {c}^{2}  -  {d}^{2} are in GP with common difference \:  {r}^{2}

Similar questions