if a b c d are in GP then prove that bc = ad
Answers
Answered by
27
b^2=ac
c^2=bd
then, b^2 × c^2 = abcd
bc×bc= ad×bc
bc=ad
Ushan12345:
plz put it as brainlist answer...
Answered by
5
★For Your Better Understanding I just give a picture which had another similar question★
(b-c)^2 + (c-a)^2 + (d-b)^2 = (a-d)^2
Let a = p, b = pr , c = pr² and d = pr³
Now, LHS = (b - c)² + (c - a)² + (d - b)²
= (pr - pr²)² + (pr² - p)² + (pr³ - pr)²
=( p²r² + p²r⁴ - 2p²r³) + (p²r⁴ + p² - 2p²r²) + (p²r^6 + p²r² -2p²r⁴)
= p²r^6 - 2p²r³ + p²
= (pr³) -2(pr³)(p) + p²
= (pr³ - p)²
= (p - pr³)²
=(a - d)² = RHS
HOPE IT HELPED ^_^
(b-c)^2 + (c-a)^2 + (d-b)^2 = (a-d)^2
Let a = p, b = pr , c = pr² and d = pr³
Now, LHS = (b - c)² + (c - a)² + (d - b)²
= (pr - pr²)² + (pr² - p)² + (pr³ - pr)²
=( p²r² + p²r⁴ - 2p²r³) + (p²r⁴ + p² - 2p²r²) + (p²r^6 + p²r² -2p²r⁴)
= p²r^6 - 2p²r³ + p²
= (pr³) -2(pr³)(p) + p²
= (pr³ - p)²
= (p - pr³)²
=(a - d)² = RHS
HOPE IT HELPED ^_^
Attachments:
Similar questions