Math, asked by devanshisah1234, 9 months ago

If a,b,c,d are in proportion,prove that:
(5a + 7b)(2c - 3d) = (5c + 7d)(2a - 3b)
please answer......

Answers

Answered by Agastya0606
7

Given: a,b,c,d are in proportion.

To find: prove that:   (5a + 7b)(2c - 3d) = (5c + 7d)(2a - 3b)

Solution:

  • Now we have given that a,b,c,d are in proportion , so:

               ad = bc

  • Now  lets consider LHS, we have:

               ( 5a + 7b )( 2c - 3d )

  • Expanding it, we get:

               10ac - 15ad + 14bc - 21bd

                10ac - 21bd  ad

  • Now lets consider RHS, we have:

                ( 5c + 7d ) ( 2a - 3b )  

                10ac - 15bc + 14ad - 21bd

                10ac - 21bd - ad

  • LHS = RHS
  • Hence proved.

Answer:

             So we proved that  (5a + 7b)(2c - 3d) = (5c + 7d)(2a - 3b)

Similar questions
Biology, 1 year ago