If a, b, c, d are in proportion, prove that: (ma? + nb) : (mc + nd?) = (ma? - nb) : (mc? : (me² - nd²)
give correct answer or I will report u
Answers
Answer:
If (ma + nb) : b : : (mc + nd) : d, prove that a, b, c, d are in proportion.
Step-by-step explanation:
Consider, (ma+nb):b :: (mc+nd):d
Consider, (ma+nb):b :: (mc+nd):d⟹
Consider, (ma+nb):b :: (mc+nd):d⟹ b
Consider, (ma+nb):b :: (mc+nd):d⟹ b(ma+nb)
Consider, (ma+nb):b :: (mc+nd):d⟹ b(ma+nb)
Consider, (ma+nb):b :: (mc+nd):d⟹ b(ma+nb) =
Consider, (ma+nb):b :: (mc+nd):d⟹ b(ma+nb) = d
Consider, (ma+nb):b :: (mc+nd):d⟹ b(ma+nb) = d(mc+nd)
Consider, (ma+nb):b :: (mc+nd):d⟹ b(ma+nb) = d(mc+nd)
Consider, (ma+nb):b :: (mc+nd):d⟹ b(ma+nb) = d(mc+nd)
Consider, (ma+nb):b :: (mc+nd):d⟹ b(ma+nb) = d(mc+nd) d(ma+nb)=b(mc+nd)
Consider, (ma+nb):b :: (mc+nd):d⟹ b(ma+nb) = d(mc+nd) d(ma+nb)=b(mc+nd)dma+dnb=bmc+bnd
Consider, (ma+nb):b :: (mc+nd):d⟹ b(ma+nb) = d(mc+nd) d(ma+nb)=b(mc+nd)dma+dnb=bmc+bnddma−bmc=bnd−dnb
Consider, (ma+nb):b :: (mc+nd):d⟹ b(ma+nb) = d(mc+nd) d(ma+nb)=b(mc+nd)dma+dnb=bmc+bnddma−bmc=bnd−dnbm(da−bc)=n(bd−db)
Consider, (ma+nb):b :: (mc+nd):d⟹ b(ma+nb) = d(mc+nd) d(ma+nb)=b(mc+nd)dma+dnb=bmc+bnddma−bmc=bnd−dnbm(da−bc)=n(bd−db)m(da−bc)=n(0)
Consider, (ma+nb):b :: (mc+nd):d⟹ b(ma+nb) = d(mc+nd) d(ma+nb)=b(mc+nd)dma+dnb=bmc+bnddma−bmc=bnd−dnbm(da−bc)=n(bd−db)m(da−bc)=n(0)m(da−bc)=0
Consider, (ma+nb):b :: (mc+nd):d⟹ b(ma+nb) = d(mc+nd) d(ma+nb)=b(mc+nd)dma+dnb=bmc+bnddma−bmc=bnd−dnbm(da−bc)=n(bd−db)m(da−bc)=n(0)m(da−bc)=0da−bc=0 ---- As m cannot be equal to 0
Consider, (ma+nb):b :: (mc+nd):d⟹ b(ma+nb) = d(mc+nd) d(ma+nb)=b(mc+nd)dma+dnb=bmc+bnddma−bmc=bnd−dnbm(da−bc)=n(bd−db)m(da−bc)=n(0)m(da−bc)=0da−bc=0 ---- As m cannot be equal to 0∴da=bc
Consider, (ma+nb):b :: (mc+nd):d⟹ b(ma+nb) = d(mc+nd) d(ma+nb)=b(mc+nd)dma+dnb=bmc+bnddma−bmc=bnd−dnbm(da−bc)=n(bd−db)m(da−bc)=n(0)m(da−bc)=0da−bc=0 ---- As m cannot be equal to 0∴da=bcb
Consider, (ma+nb):b :: (mc+nd):d⟹ b(ma+nb) = d(mc+nd) d(ma+nb)=b(mc+nd)dma+dnb=bmc+bnddma−bmc=bnd−dnbm(da−bc)=n(bd−db)m(da−bc)=n(0)m(da−bc)=0da−bc=0 ---- As m cannot be equal to 0∴da=bcba
Consider, (ma+nb):b :: (mc+nd):d⟹ b(ma+nb) = d(mc+nd) d(ma+nb)=b(mc+nd)dma+dnb=bmc+bnddma−bmc=bnd−dnbm(da−bc)=n(bd−db)m(da−bc)=n(0)m(da−bc)=0da−bc=0 ---- As m cannot be equal to 0∴da=bcba
Consider, (ma+nb):b :: (mc+nd):d⟹ b(ma+nb) = d(mc+nd) d(ma+nb)=b(mc+nd)dma+dnb=bmc+bnddma−bmc=bnd−dnbm(da−bc)=n(bd−db)m(da−bc)=n(0)m(da−bc)=0da−bc=0 ---- As m cannot be equal to 0∴da=bcba =
Consider, (ma+nb):b :: (mc+nd):d⟹ b(ma+nb) = d(mc+nd) d(ma+nb)=b(mc+nd)dma+dnb=bmc+bnddma−bmc=bnd−dnbm(da−bc)=n(bd−db)m(da−bc)=n(0)m(da−bc)=0da−bc=0 ---- As m cannot be equal to 0∴da=bcba = d
Consider, (ma+nb):b :: (mc+nd):d⟹ b(ma+nb) = d(mc+nd) d(ma+nb)=b(mc+nd)dma+dnb=bmc+bnddma−bmc=bnd−dnbm(da−bc)=n(bd−db)m(da−bc)=n(0)m(da−bc)=0da−bc=0 ---- As m cannot be equal to 0∴da=bcba = dc
Consider, (ma+nb):b :: (mc+nd):d⟹ b(ma+nb) = d(mc+nd) d(ma+nb)=b(mc+nd)dma+dnb=bmc+bnddma−bmc=bnd−dnbm(da−bc)=n(bd−db)m(da−bc)=n(0)m(da−bc)=0da−bc=0 ---- As m cannot be equal to 0∴da=bcba = dc