Math, asked by zoomnet7505, 10 months ago

If a,b,c,d are in proportion then prove
(11a+15b)/(11c+15d)=[(3a^2x+5b^2y)/(3c^2x+5d^2y)]^1/2

Answers

Answered by slicergiza
4

Answer:

Given,

a,b,c,d are in a proportion, that is \frac{a}{b}=\frac{c}{d}    ...... (1)

We have to prove : \frac{11a+15b}{11c+15d}=(\frac{3a^2x+5b^2y}{3c^2x+5d^2y})^\frac{1}{2}

L.H.S.

\frac{11a+15b}{11c+15d}=\frac{b(11(\frac{a}{b})+15)}{d(11(\frac{c}{d})+15)}

=\frac{b(11(\frac{c}{d})+15)}{d(11(\frac{c}{d})+15)}  (from equation (1))

=\frac{b}{d}

R.H.S.

(\frac{3a^2x+5b^2y}{3c^2x+5d^2y})^\frac{1}{2}

=\sqrt{\frac{3a^2x+5b^2y}{3c^2x+5d^2y}}

=\sqrt{\frac{b^2(3(\frac{a}{b})^2x+5y)}{d^2(3(\frac{c}{d})^2x+5y)}}

=\sqrt{\frac{b^2(3(\frac{c}{d})^2x+5y)}{d^2(3(\frac{c}{d})^2x+5y)}}                           (From equation (1) )

=\sqrt{\frac{b^2}{d^2}}

=\frac{b}{d}

Therefore, \frac{11a+15b}{11c+15d}=(\frac{3a^2x+5b^2y}{3c^2x+5d^2y})^\frac{1}{2}

#Learn more:

Given a/b=c/d; prove that :- (3a-5b)/(3a+5b)=(3c-5d)/(3c+5d)...

https://brainly.in/question/8614636

Similar questions