If a, b, c, d are in proportion, then prove that a^2+ab+b^2/a^2−ab+b^2= c^2+cd+d^2/c^2−cd+d^2
Answers
Answered by
2
Answer:
hey follow me and make sure you mark me as a brainliest answer.....
Step-by-step explanation:
a2 + c2), (ab + cd) and (b2 + d2) are in continued proportion.
⇒ (a2 + c2) : (ab + cd) = (ab + cd) : (b2 + d2)
⇒ (a2 + c2) (b2 + d2) = (ab + cd) (ab + cd)
⇒ a2b2 + a2d2 + c2b2 + c2d2 = a2b2 + 2abcd + c2d2
⇒ a2d2 + c2b2 – 2abcd = 0
⇒ (ad – cb)2 = 0
⇒ ad – cb = 0
⇒ ad = bc
⇒ a/b = c/d
⇒ a, b, c and d are in proportion.
Similar questions