Math, asked by PrOBaBUGaMiNG, 2 months ago

if a b c d is in continued proportion find : a+b/c+d =√2a2 +7b2/2c2+7d2​

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Since,

a, b, c, d are in continued proportion.

\rm :\implies\:\dfrac{b}{a}  = \dfrac{c}{b}  = \dfrac{d}{c}

Let assume that

\rm :\longmapsto\:\:\dfrac{b}{a}  = \dfrac{c}{b}  = \dfrac{d}{c}  = x

\rm :\longmapsto\:b = ax

\rm :\longmapsto\:c = bx = ax \times x =  {ax}^{2}

\rm :\longmapsto\:d = cx = a {x}^{2}  \times x =  {ax}^{3}

Consider,

\rm :\longmapsto\:\dfrac{a + b}{c + d}

\rm \:  =  \:  \: \dfrac{a + ax}{ {ax}^{2}  +  {ax}^{3} }

\: \rm \:  = \:\dfrac{a(1 + x)}{ {ax}^{2}(1 + x) }

\: \rm \:  = \:\dfrac{1}{ {x}^{2} }

Hence,

 \purple{\bf:\longmapsto\:\dfrac{a + b}{c + d} =  \dfrac{1}{ {x}^{2} } -  -  - (1)}

Consider,

\rm :\longmapsto\: \sqrt{\dfrac{ {2a}^{2}  +  {7b}^{2} }{ {2c}^{2}  +  {7d}^{2} }}

\: \: \rm \:  = \:\sqrt{\dfrac{ {2a}^{2}  +  {7(ax)}^{2} }{ {2( {ax}^{2}) }^{2}  +  {7 {(ax}^{3} )}^{2} }}

\: \rm \:  = \: \sqrt{\dfrac{2 {a}^{2} + 7 {a}^{2} {x}^{2}  }{2 {a}^{2}  {x}^{4} + 7 {a}^{2} {x}^{6} } }

\: \rm \:  = \: \sqrt{\dfrac{ {a}^{2}(2  +  {7x}^{2} )}{ {a}^{2} {x}^{4}(2 +  {7x}^{2})} }

\: \rm \:  = \: \sqrt{\dfrac{1}{ {x}^{4} } }

\: \rm \:  = \:\dfrac{1}{ {x}^{2} }

 \purple{\bf :\longmapsto\: \sqrt{\dfrac{ {2a}^{2}  +  {7b}^{2} }{ {2c}^{2}  +  {7d}^{2} }}  =  \dfrac{1}{ {x}^{2} }  -  -  -  - (2)}

From equation (1) and (2), we concluded that

 \purple{\bf :\longmapsto\: \dfrac{a + b}{c + d} \:  =  \: \sqrt{\dfrac{ {2a}^{2}  +  {7b}^{2} }{ {2c}^{2}  +  {7d}^{2}}}}

{{\boxed{\bf{Hence, Proved}}}}

Additional Information :-

\rm :\longmapsto\:If \: \dfrac{a}{b} = \dfrac{c}{d} \: then \:

\rm :\longmapsto\:\: \dfrac{a}{c} = \dfrac{b}{d} \: \: is \: called \: alternendo

\rm :\longmapsto\:\: \dfrac{b}{a} = \dfrac{d}{c} \: \: is \: called \: invertendo

\rm :\longmapsto\:\: \dfrac{a + b}{b} = \dfrac{c + d}{d} \: \: is \: called \: componendo

\rm :\longmapsto\:\: \dfrac{a  -  b}{b} = \dfrac{c  -  d}{d} \: \: is \: called \: dividendo

\rm :\longmapsto\:\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{a + c}{b + d}  \: is \: called \: addhendo

Similar questions