Math, asked by dk143443, 10 months ago

If a/b=c/d,show that (a+b):(c+d)=√(a^2+b^2):√(c^2+d^2)

Answers

Answered by varadad25
3

Answer:

\displaystyle{\boxed{\red{\sf\:(\:a\:+\:b\:)\::\:(\:c\:+\:d\:)\:=\:\sqrt{a^2\:+\:b^2}\::\:\sqrt{c^2\:+\:d^2}}}}

Step-by-step-explanation:

We have given that,

\displaystyle{\sf\:\dfrac{a}{b}\ =\ \dfrac{c}{d}}

We have to prove that,

\displaystyle{\sf\:(\:a\:+\:b\:)\::\:(\:c\:+\:d\:) \:=\:\sqrt{a^2\:+\:b^2}\::\:\sqrt{c^2\:+\:d^2}}

Now,

\displaystyle{\sf\:\dfrac{a}{b}\ =\ \dfrac{c}{d}}

Let,

\displaystyle{\implies\sf\:\dfrac{a}{b}\ =\ \dfrac{c}{d}\:=\:k}

\displaystyle{\implies\sf\:a\:=\:bk\:\:\&\:\:c\:=\:dk}

Now, we have to prove that,

\displaystyle{\sf\:(\:a\:+\:b\:)\::\:(\:c\:+\:d\:)\:=\:\sqrt{a^2\:+\:b^2}\::\:\sqrt{c^2\:+\:d^2}}

\displaystyle{\implies\sf\:\dfrac{(\:a\:+\:b\:)}{(\:c\:+\:d\:)}\:=\:\dfrac{\sqrt{a^2\:+\:b^2}}{\sqrt{c^2\:+\:d^2}}}

\displaystyle{\implies\sf\:LHS\:=\:\dfrac{(\:a\:+\:b\:)}{(\:c\:+\:d\:)}}

\displaystyle{\implies\sf\:LHS\:=\:\dfrac{bk\:+\:b}{dk\:+\:d}}

\displaystyle{\implies\sf\:LHS\:=\:\dfrac{b\:\cancel{(\:k\:+\:1\:)}}{d\:\cancel{(\:k\:+\:1\:)}}}

\displaystyle{\implies\pink{\sf\:LHS\:=\:\dfrac{b}{d}}}

Now,

\displaystyle{\implies\sf\:RHS\:=\:\dfrac{\sqrt{a^2\:+\:b^2}}{\sqrt{c^2\:+\:d^2}}}

\displaystyle{\implies\sf\:RHS\:=\:\sqrt{\dfrac{(\:bk\:)^2\:+\:b^2}{(\:dk\:)^2\:+\:d^2}}}

\displaystyle{\implies\sf\:RHS\:=\:\sqrt{\dfrac{b^2\:k^2\:+\:b^2}{d^2\:k^2\:+\:d^2}}}

\displaystyle{\implies\sf\:RHS\:=\:\sqrt{\dfrac{b^2\:\cancel{(\:k^2\:+\:1\:)}}{d^2\:\cancel{(\:k^2\:+\:1\:)}}}}

\displaystyle{\implies\sf\:RHS\:=\:\sqrt{\dfrac{b^2}{d^2}}}

\displaystyle{\implies\sf\:RHS\:=\:\sqrt{\dfrac{b\:\times\:b}{d\:\times\:d}}}

\displaystyle{\implies\pink{\sf\:RHS\:=\:\dfrac{b}{d}}}

\displaystyle{\therefore\:\underline{\boxed{\red{\sf\:LHS\:=\:RHS\:}}}}

Hence proved!

Answered by BarbieBablu
1

 \bf \: Let  \: \frac{a}{b} \:  =  \frac{c}{d} = k \: (say)

  \bf=  > a = bk,c = dk

 \bf \: L.H.S =  \frac{ \: a + b \: }{c + d}

   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf = \frac{ \: bk  + b \: }{ck + c}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf=  \frac{ \: (bk + 1) \: }{(dk + 1)}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf \color{red}= >   \frac{ \: b \: }{d}

 \bf \: R.H.S =    \frac{  \: \sqrt{ {a}^{2} +  {b}^{2}  } }{ \sqrt{ {c}^{2} +  {d}^{2}    } }

  \ \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf =  \frac{ \:  \sqrt{ {(bk)}^{2}  +  {b}^{2} } }{ \sqrt{ {(dk)}^{2} +  {b}^{2}   \: }  }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf =   \frac{ \sqrt{ {b}^{2} {(k}^{2} + 1) } }{ \sqrt{ {d}^{2} {(k}^{2} + 1)  } }

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bf =   \frac{ \sqrt{ \:  {b}^{2} } }{ \sqrt{ {d}^{2} }  \: }

 \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\bf  \color{red}= >   \frac{ \: b \: }{ \: d \: }

 \bf \: Therefore, \color{red} L.H.S=R.H.S

Similar questions