Math, asked by deepakstayraw66, 1 year ago

if a:b = c:d show that xa + yb: : a b xc yd : c d α− β= + α− β

Answers

Answered by pulakmath007
6

SOLUTION

TO PROVE

If a : b = c : d then show that

 \displaystyle \sf{(xa  + yb) : (a \alpha  - b \beta ) =(xc  + yd) : (c \alpha  - d \beta )  }

EVALUATION

Here it is given that a : b = c : d

 \displaystyle \sf{  \implies \: \frac{a}{b}  =  \frac{c}{d}  = k \:  \:  \: (say)}

 \displaystyle \sf{  \implies \: a = bk \:  \: and \:  \: c = dk}

Now

LHS

 \displaystyle \sf{ = (xa  + yb) : (a \alpha  - b \beta )  }

 \displaystyle \sf{ =  \frac{ (xa  + yb)}{(a \alpha  - b \beta )}   }

 \displaystyle \sf{ =  \frac{ (xbk  + yb)}{(bk\alpha  - b \beta )}   }

 \displaystyle \sf{ =  \frac{b (xk  + y)}{b(k\alpha  -  \beta )}   }

 \displaystyle \sf{ =  \frac{ (xk  + y)}{(k\alpha  -  \beta )}   }

RHS

 \displaystyle \sf{=(xc  + yd) : (c \alpha  - d \beta )  }

 \displaystyle \sf{= \frac{(xc  + yd)}{(c \alpha  - d \beta )}    }

 \displaystyle \sf{= \frac{(xdk  + yd)}{(dk \alpha  - d \beta )}    }

 \displaystyle \sf{= \frac{d(xk  + y)}{d(k \alpha  -  \beta )}    }

 \displaystyle \sf{= \frac{(xk  + y)}{(k \alpha  -  \beta )}    }

∴ LHS = RHS

Hence proved

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If 4 : 3 = y : 9 then y = ?

https://brainly.in/question/39267349

2. What will be the ratio of 20 rupees to 5 rupees?

https://brainly.in/question/37944893

Similar questions