IF A:B=C:D THEN PROVE A2+C2/AB+CD=AB+CD/B2+D2
Answers
Answered by
2
Given : A:B=C:D
To Find : Prove that
(A² + C²)/(AB + CD) = (AB + CD)/(B² + D²)
Solution:
A:B=C:D
A/B = C/D = k
=> A = BK and C= DK
(A² + C²)/(AB + CD) = (AB + CD)/(B² + D²)
LHS =
(A² + C²)/(AB + CD)
= ((BK)² + (DK)²)/(BKB + DKD)
= (K²(B² + D²)/K(B² + D²)
= K
RHS =
(AB + CD)/(B² + D²)
= (BKB + DKD)/(B² + D²)
= K(B² + D²)/(B² + D²)
= K
LHS = RHS = K
Hence Proved (A² + C²)/(AB + CD) = (AB + CD)/(B² + D²)
Learn More:
if (ad-bc)/(ab-c+d)=(ac-bd)/(a-b+cd)
brainly.in/question/14802463
(a+c)⁴/(b+d)⁴
brainly.in/question/2359072
Similar questions