If a, b, c ER and equations ax2 + bx + c = 0
and x2 + 4x + 5 = 0 have a common root
then
Question Type: Multiple Correct Type
1 a + b + c = 9
2 a + b × c = 25
a + b
3
1
4 b2 + 4 = 4ac
Answers
Answer:
I hope this answer will help you..
Step-by-step explanation:
What would you like to ask?
MATHS
avatar
Asked on December 26, 2019 by
Shree D'Souza
If the equations x
2
+4x+5=0 and ax
2
+bx+c=0 have a common root (where a,b,c∈N), then the least value of a+b+c is equal to:
Share
Study later
ANSWER
The root of the given equation x
2
+4x+5=0 are
x=
2
−4±
16−20
=−2±i, where i=
−1
.
Now, for the equation ax
2
+bx+c=0, where a,b,c are positive integers, has a common root with the first equation.
As the two roots of the first equation are complex and a,b,c are natural numbers, the second equation also will have the same roots.
As complex roots occurs in pairs of a quadratic equation with real co-efficient.
For least value of a,b,c we will get least a+b+c
For that case the second equation will be same as the first
So, a+b+c=1+4+5=10.