Math, asked by anshul515, 1 year ago

if A+B+C = π
find sin 2A+sin 2B+ sin 2C​

Answers

Answered by NDubey
0

Answer:

sin2A + sin 2B +sin2C = 2 sin(A+B)cos(A-B) + 2sinC cosC =2sinC cos(A-B)+2sinC cosC =2sinC (cos(A-b) + cos C) =2sin C(cos(A-B) - cos(A+B) ) = 2sinC . 2sin A sin B =4 sinA sin B sin C

7

Answered by Ʀɑү
50

Answer:

  \maltese \: \bf \underline{{\sf4 \sin A \sin  B  \sin C}}

Step-by-step explanation:

Given:

  • A+B+C = π

To find:

sin2A + sin2B + sin2C

Solution:

 \sf\sin2A +  \sin(2B )  +  \sin(2C)  \\  \\  :\implies \sf 2 \sin   \bigg \lgroup \sf \frac{2A   + 2B}{2} \bigg \rgroup\cos\bigg \lgroup \frac{2A  -  2B}{2} \bigg \rgroup  +  \sin 2C

:\implies \sf2 \sin \: (A+B) \cos(A - B)  +  \sin2C \\  \\ :\implies \sf2 \sin \: (\pi -C ) \cos(A - B)  +  \sin2C \\

Therefore,

   \bigg \lgroup\tt \: A+B+C = π, \:  \: A+B = \pi -  C  \\   \therefore \sf \sin(A+B)  =  \sin(\pi - C ) = \sin \: C \bigg \rgroup

   :  \implies \sf2 \sin \: C \cos(A - B) + 2\sin \: C \cos \: C \\  \\ :  \implies \sf2 \sin \: C \big \lgroup\cos(A - B) + cos \: C ) \big \rgroup \\  \\ \implies \sf2 \sin \: C \big \lgroup  \cos(A - B) - \cos(A - B)\big \rgroup

   \star\therefore \sf  \cos(A - B)  -  \cos(A+B)  = 2 \sin \: A  \sin B

  : \implies \sf \: 2 \sin C[2 \sin  \sin \: B  ] \\   \\  : \implies  \bf\sf4 \sin A \sin  B  \sin C

Similar questions