If a, b, c > 0 prove that a^3 + b^3 + c^3 > 3abc .
Answers
Answered by
5
Answer:
Step-by-step explanation:
If a , b , c > 0, then sum of a , b , c will be greater than zero.
=> a + b + c > 0
=> a + b > - c
Cubing on both sides
=> (a + b)³ > - c³
=> a³ + b³ + 3ab(a + b) > - c³
=> a³ + b³ + c³ > - 3ab(a+b)
=> a³ + b³ + c³ > - 3ab(-c)
=> a³ + b³ + c³ > 3abc.
Hence proved.
Similar questions