Math, asked by devjob2295, 1 month ago

if a,b,c >0 then a/b+c + b/c+a + c/a+b >=k.. Then the value of k is?

Answers

Answered by shadowsabers03
8

By AM - GM inequality we have,

\small\text{$\longrightarrow\dfrac{\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)}{3}\geq\left(\dfrac{a}{b+c}\cdot\dfrac{b}{c+a}\cdot\dfrac{c}{a+b}\right)^{\frac{1}{3}}$}

\small\text{$\longrightarrow\dfrac{\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)}{3}\geq\left(\dfrac{abc}{(a+b)(b+c)(c+a)}\right)^{\frac{1}{3}}\quad\dots(1)$}

Now the term \small\text{$\left(\dfrac{abc}{(a+b)(b+c)(c+a)}\right)^{\frac{1}{3}}$} has to be maximum.

Again by AM - GM inequality we have the following.

  • \small\text{$\dfrac{a+b}{2}\geq\sqrt{ab}\quad\dots(2)$}
  • \small\text{$\dfrac{b+c}{2}\geq\sqrt{bc}\quad\dots(3)$}
  • \small\text{$\dfrac{c+a}{2}\geq\sqrt{ca}\quad\dots(4)$}

Multiplying (2), (3) and (4) we get,

\small\text{$\longrightarrow\dfrac{a+b}{2}\cdot\dfrac{b+c}{2}\cdot\dfrac{c+a}{2}\geq\sqrt{a^2b^2c^2}$}

\small\text{$\longrightarrow\dfrac{(a+b)(b+c)(c+a)}{8}\geq abc$}

\small\text{$\longrightarrow\dfrac{abc}{(a+b)(b+c)(c+a)}\leq\dfrac{1}{8}$}

\small\text{$\longrightarrow\left(\dfrac{abc}{(a+b)(b+c)(c+a)}\right)^{\frac{1}{3}}\leq\left(\dfrac{1}{8}\right)^{\frac{1}{3}}$}

\small\text{$\longrightarrow\left(\dfrac{abc}{(a+b)(b+c)(c+a)}\right)^{\frac{1}{3}}\leq\dfrac{1}{2}$}

For maximum,

\small\text{$\longrightarrow\left(\dfrac{abc}{(a+b)(b+c)(c+a)}\right)^{\frac{1}{3}}=\dfrac{1}{2}$}

Then (1) becomes,

\small\text{$\longrightarrow\dfrac{\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)}{3}\geq\dfrac{1}{2}$}

\small\text{$\longrightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\geq\dfrac{3}{2}$}

Therefore,

\small\text{$\longrightarrow\underline{\underline{k=\dfrac{3}{2}}}$}

Similar questions