if a-b-c , i (ac)=17, i (ab) =9 then find|(bc)
Answers
Answer:
Given, in △ABC, ∠B=90
Given, in △ABC, ∠B=90 o
Given, in △ABC, ∠B=90 o
Given, in △ABC, ∠B=90 o ∴AC
Given, in △ABC, ∠B=90 o ∴AC 2
Given, in △ABC, ∠B=90 o ∴AC 2 =AB
Given, in △ABC, ∠B=90 o ∴AC 2 =AB 2
Given, in △ABC, ∠B=90 o ∴AC 2 =AB 2 +BC
Given, in △ABC, ∠B=90 o ∴AC 2 =AB 2 +BC 2
Given, in △ABC, ∠B=90 o ∴AC 2 =AB 2 +BC 2 [∵ Pythagoras theorem]
Given, in △ABC, ∠B=90 o ∴AC 2 =AB 2 +BC 2 [∵ Pythagoras theorem] ⇒BC
Given, in △ABC, ∠B=90 o ∴AC 2 =AB 2 +BC 2 [∵ Pythagoras theorem] ⇒BC 2
Given, in △ABC, ∠B=90 o ∴AC 2 =AB 2 +BC 2 [∵ Pythagoras theorem] ⇒BC 2 =AC
Given, in △ABC, ∠B=90 o ∴AC 2 =AB 2 +BC 2 [∵ Pythagoras theorem] ⇒BC 2 =AC 2
Given, in △ABC, ∠B=90 o ∴AC 2 =AB 2 +BC 2 [∵ Pythagoras theorem] ⇒BC 2 =AC 2 −AB
Given, in △ABC, ∠B=90 o ∴AC 2 =AB 2 +BC 2 [∵ Pythagoras theorem] ⇒BC 2 =AC 2 −AB 2
Given, in △ABC, ∠B=90 o ∴AC 2 =AB 2 +BC 2 [∵ Pythagoras theorem] ⇒BC 2 =AC 2 −AB 2
Given, in △ABC, ∠B=90 o ∴AC 2 =AB 2 +BC 2 [∵ Pythagoras theorem] ⇒BC 2 =AC 2 −AB 2 BC
Given, in △ABC, ∠B=90 o ∴AC 2 =AB 2 +BC 2 [∵ Pythagoras theorem] ⇒BC 2 =AC 2 −AB 2 BC 2
Given, in △ABC, ∠B=90 o ∴AC 2 =AB 2 +BC 2 [∵ Pythagoras theorem] ⇒BC 2 =AC 2 −AB 2 BC 2 =17
Given, in △ABC, ∠B=90 o ∴AC 2 =AB 2 +BC 2 [∵ Pythagoras theorem] ⇒BC 2 =AC 2 −AB 2 BC 2 =17 2
Given, in △ABC, ∠B=90 o ∴AC 2 =AB 2 +BC 2 [∵ Pythagoras theorem] ⇒BC 2 =AC 2 −AB 2 BC 2 =17 2 −8
Given, in △ABC, ∠B=90 o ∴AC 2 =AB 2 +BC 2 [∵ Pythagoras theorem] ⇒BC 2 =AC 2 −AB 2 BC 2 =17 2 −8 2
Given, in △ABC, ∠B=90 o ∴AC 2 =AB 2 +BC 2 [∵ Pythagoras theorem] ⇒BC 2 =AC 2 −AB 2 BC 2 =17 2 −8 2
Given, in △ABC, ∠B=90 o ∴AC 2 =AB 2 +BC 2 [∵ Pythagoras theorem] ⇒BC 2 =AC 2 −AB 2 BC 2 =17 2 −8 2 BC
Given, in △ABC, ∠B=90 o ∴AC 2 =AB 2 +BC 2 [∵ Pythagoras theorem] ⇒BC 2 =AC 2 −AB 2 BC 2 =17 2 −8 2 BC 2
Given, in △ABC, ∠B=90 o ∴AC 2 =AB 2 +BC 2 [∵ Pythagoras theorem] ⇒BC 2 =AC 2 −AB 2 BC 2 =17 2 −8 2 BC 2 =289−64=225
Given, in △ABC, ∠B=90 o ∴AC 2 =AB 2 +BC 2 [∵ Pythagoras theorem] ⇒BC 2 =AC 2 −AB 2 BC 2 =17 2 −8 2 BC 2 =289−64=225∴BC=
Given, in △ABC, ∠B=90 o ∴AC 2 =AB 2 +BC 2 [∵ Pythagoras theorem] ⇒BC 2 =AC 2 −AB 2 BC 2 =17 2 −8 2 BC 2 =289−64=225∴BC= 225
Given, in △ABC, ∠B=90 o ∴AC 2 =AB 2 +BC 2 [∵ Pythagoras theorem] ⇒BC 2 =AC 2 −AB 2 BC 2 =17 2 −8 2 BC 2 =289−64=225∴BC= 225
Given, in △ABC, ∠B=90 o ∴AC 2 =AB 2 +BC 2 [∵ Pythagoras theorem] ⇒BC 2 =AC 2 −AB 2 BC 2 =17 2 −8 2 BC 2 =289−64=225∴BC= 225 =15cm