if a + b + c is equal to 6 a square + b square + c square is equal to 12 find the value of a cube plus b cube plus c cube - 3abc
Answers
Answered by
3
Answer:
a+b+c=6,a
2
+b
2
+c
2
=14,a
3
+b
3
+c
3
=36
(a+b+c)=a
2
+b
2
+c
2
+2(ab+bc+ca)
⟹2(ab+bc+ca)=(6)
2
−14
⟹2(ab+bc+ca)=(6)
2
−14
=36−14=22
ab+bc+ca=11
Now ,we know a
3
+b
3
+c
3
−3abc=(a+b+c)(a
2
+b
2
+c
2
−(ab+bc+ca))
⟹36−3abc=6(14−11)
⟹36−3abc=6×3=18
⟹3abc=18
⟹abc=6
Answered by
1
Answer:
a +b+c= 6 (1)
a²+b²+c²= 12 (2)
from this we get values of a b c
a=2
b=2
c=2
hence,
a³+b³+c³-3abc = 2³+2³+2³-3(2) (2) (2)
= 8+8+8-24
= 24-24
= 0
hence zero 0️⃣ is the final answer
Similar questions