if a + b + C is equal to 9 and a b + BC + CA equal to 26 find a square + b square + c square
Answers
Answered by
6
a+b+c=9
(a+b+c)^2=9^2
=a^2+b^2+c^2+2(ab+bc+ca)=81
=a^2+b^2+c^2+52=81
=a^2+b^2+c^2=81-52=29
hope the answer is correct
Answered by
3
Identity to be used: (a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca
Given:
a + b + c = 9
ab + bc + ca = 26
To find: a^2 + b^2 + c^2
Answer:
(a + b + c) = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca
(a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca)
9^2 = a^2 + b^2 + c^2 + 2*26
81 = a^2 + b^2 + c^2 + 52
a^2 + b^2 + c^2 + 52 = 81
a^2 + b^2 + c^2 = 81 - 52
a^2 + b^2 + c^2 = 29
Hope it helps :)
Similar questions