Math, asked by divyanshmaurya697, 4 months ago

if a+b+c=o then a^2/bc+b^2/ca+c^2/ab

Answers

Answered by aryan073
5

Given :

• If \\ \rm{a+b+c=0}

•then \\ \rm{\dfrac{a^{2}}{bc}+\dfrac{b^{2}}{ca}+\dfrac{c^{2}}{ab}}

To Find :

\\ \boxed{\sf{The \: value \: of \: \dfrac{a^{2}}{bc}+\dfrac{b^{2}}{ca}+\dfrac{c^{2}}{ab}=?}}

Formulas :

 \pink \bigstar \bf \:  {a}^{3}  +  {b}^{3}  +  {c}^{3}  = (a + b + c)( {a}^{2}  +  {b}^{2}  +  {c}^{2}  - ab - bc - ca) + 3 abc

Solution:

Given equation,

➡ a+b+c=0

we have,

 \tt \bigstar  {a}^{3}  +  {b}^{3}  +  {c}^{3}  = (a + b + c)( {a}^{2}   +  {b}^{2}  +  {c}^{2}  - ab - bc - ca) + 3abc

If a+b+c=0

then

  \\ \implies \sf \:  {a}^{3}  +  {b}^{3}  +  {c}^{3}  = (0)( {a}^{2}  +  {b}^{2} +  {c}^{2}   - ab - bc - ca) + 3abc \\  \\  \implies \sf \:  {a}^{3}  +  {b}^{3}  +  {c}^{3}  = 3abc \:  \:  \:  \qquad.....equation(1)

 \\  \implies \sf \:  \frac{ {a}^{2} }{bc}  +  \frac{ {b}^{2} }{ca}  +  \frac{ {c}^{2} }{ab}  \\  \\  \implies \bold{ \red{ \underline{multipying \: both \: sides \: a \: b \: and \: c}}} \\  \\  \\  \implies \sf \:  \frac{ {a}^{2} }{bc}  \times  \frac{a}{a}  +  \frac{ {b}^{2} }{ac}  \times  \frac{b}{b}  +   \frac{ {c}^{2} }{ab}  \times  \frac{c}{c}  \\  \\  \\  \implies \sf \:  \frac{ {a}^{3} }{abc}  +  \frac{ {b}^{3} }{abc} +  \frac{ {c}^{3} }{abc}   \\  \\  \\  \implies \sf \:  \frac{ {a}^{3}  +  {b}^{3}  +  {c}^{3} }{abc}  \\  \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \implies \sf \quad \  \frac{3abc}{abc}  \:  \:  \:  \qquad \: ...from \: equation(1) \\  \\   \\ \implies \sf \:  3 \\  \\  \\  \boxed{ \pink \bigstar{ \bf{ \frac{ {a}^{2} }{bc}  +  \frac{ {b}^{2} }{ac}  +  \frac{ {c}^{2} }{ab}  = 3}}}

The Correct answer will be 3.

Similar questions