Math, asked by jhikisurroy, 11 months ago

.
If A + B + C = pi and cos A = cos B cos C, show that
tan A = tan B + tan C​

Answers

Answered by spiderman2019
1

Answer:

Step-by-step explanation:

tan B + tan C​ = SinB/CosB + SinC/CosC

=> SinB.CosC + SinC.CosB / CosBCosC

//Given CosA = CosBCosC

// Sin(A+B) = SinACosB + CosASinB

 = Sin(B+C) / CosA

// Given A + B + C = π => B + C = π - A

= Sin (π - A)/ CosA

 = SinA/CosA

= TanA

= R,H,S

Hence proved.

Similar questions