If A + B + C = pi and cos A = cos B cos C then prove that tan A = tan B + tan C
Answers
Answered by
4
Step-by-step explanation:
LHS =tanB+tanC=
cosB
sinB
+
cosC
sinC
=
cosBcosC
cosCsinB+sinVcosB
=
cosA
sin(B+C)
[GivencosBcosC=cosA]
cosA
sin(180−A)
=tanA=RHS
Here proved
Answered by
1
Answer:
Given A+B+C=π⟹A=π−(B+C)
And also given cosA=cosBcosC
⟹cos(π−(B+C))=cosBcosC
⟹−cosBcosC+sinBsinC=cosBcosC
⟹sinBsinC=2cosBcosC
⟹tanBtanC=2
Similar questions